A technical note on the design of an H-bridge motor controller using Nexperia discrete semiconductors and logic ICs.

Keywords
H-bridge, MOSFET, motor controller

Abstract
An example of a H-bridge motor controller designed with Nexperia discrete and Nexperia logic IC components.
1. Introduction

This technical note demonstrates a H-bridge motor controller PCB, built using Nexperia discrete semiconductors and logic ICs.

The H-bridge circuit is a full bridge DC-to-DC converter allowing operation of a brushed DC motor (48 V max, 12 V min, 5 A max). The key feature of this design is that all electronic functions are designed with Nexperia discrete and logic IC components (low cost, no micro-controller or software needed).

![Simplified MOSFET H-bridge motor control](image)

Fig. 1. Simplified MOSFET H-bridge motor control

The left MOSFETs of the full bridge (Q1 and Q3 in the simplified diagram above) are the switching MOSFETs (see the PCB top view in Fig. 26), the right MOSFETs (Q2 and Q4 in the simplified diagram above) select the motor rotation direction:

- right high side MOSFET fully ON = Forward
- right low side MOSFET fully ON = Reverse

A switch selects the motor rotation direction.

Jumpers select one of 3 switching frequencies: 7.8 kHz, 15.6 kHz or 31.3 kHz.

Two tactile push buttons allow the duty cycle (motor speed) to be increased or decreased. There are 8 steps from 0 to 100% duty cycle. A current limitation protection avoids over current in the motor and MOSFETs (set at approximately 6.5 A).

This H-bridge motor controller PCB allows the user to choose between 3 Nexperia MOSFET packages (LFPAK33, LFPAK56D or LFPAK56), jumpers are used to connect the MOSFETs chosen by the user.

This technical note describes each of the main functions used in the design.
2. Block diagram and system functionality

![Block diagram](image)

Fig. 2. H-bridge motor controller block diagram

2.1. Subsystems overview

1. **Power Supply**
 - Accepts 12 V to 48 V DC input
 - Transient overvoltage protection
 - Reverse polarity protection
 - Buck converter (12 V)
 - Linear regulator (5 V) for logic devices

2. **Clock and duty cycle generator**
 - 4 MHz crystal oscillator and frequency divider to create 3 different switching frequencies
 - Duty cycle sets by push button inputs to select the duty cycle (0% to 100%)
 - 62.5 kHz output is used to supply the charge pump on the driving circuitry block

3. **PWM**
 - Reset function to activate other function when V_{CC} 5 V supply is stable
 - Dead-time function and PWM enable (over current protection disabling)
 - Level shifter
 - Direction selection

4. **Driver circuit**
 - High-side and low-side drivers to drive 4 MOSFETs of the full bridge
 - Charge pump to supply the high-side MOSFETs

5. **H-bridge**
 - Reservoir and decoupling capacitors
 - Snubber on the left MOSFETs (switching MOSFETs)
 - Jumper to connect the selected MOSFETs
 - Gate drive resistors
 - Low-side current measurement

6. **Overcurrent detection**
 - Comparator, with voltage reference setting current limit
 - PWM reset function reactivating PWM if fault disappears
3. Subsystem descriptions

3.1. Power supply

The H-bridge motor controller power supply circuit comprises of:

- DC input stage with transient overvoltage and reverse voltage protection
- 12 V output DC-to-DC buck converter stage
- 5 V output linear regulator (for logic ICs) with status LED

![Fig. 3. Power supply circuit](image)

Transient overvoltage protection

D8 and D17 (PTVS60VS1UTR) are transient voltage suppressor diodes, rated at 60 V, 400 W for a 10/1000 μs current pulse waveform. They protect against positive and negative transients.

Note: These TVS diodes provide protection for transient overvoltage only - not for DC overvoltage.

![Fig. 4. Transient overvoltage protection](image)
Reverse polarity protection

Two parallel P-channel MOSFETs Q1 and Q2 (BUK6Y33-60P) form the reverse polarity protection. Q1 and Q2 are biased on through D1 and D2 (BZX84J-B10) respectively when the supply polarity is positive ($V_{GS} = -10 \text{ V}$). Q1 and Q2 are off when the supply is negative ($V_{GS} = V_F = 0.7 \text{ V}$), current cannot flow because the MOSFET body diodes are reverse biased.

This means that if the supply is inverted, no current will flow into the circuit and potentially cause damage.

![Fig. 5. Reverse polarity protection](image-url)
Buck converter (12 V)

The next stage is a switching regulator that outputs 12 V. To start the switching regulator a start-up circuit is used consisting of: Zener diode D18 (BZX84J-B5V6), R10, and C14. This provides a 5 V supply for inverting Schmitt trigger U21 (74HC1G14) before V\textsubscript{CC} (5 V) is available through D19 (BAS316). U21 can then start the switching regulation.

The buck converter consists of: Q5 (BUK6Y33-60P), Schottky diode D6 (PMEG10030ELP) and inductor L1. The output of the buck converter supplies the 12 V rail.

When the output of U21 is high it turns on Q5 via the NPN transistor Q3 (BC846) and the NPN/ PNP dual transistor pair Q4 (BC846BPN). The voltage on node “V_12” will then increase. When “V_12” reaches 12 V, D3 (BZX84J-B10) is conducting and there is enough voltage on U21 input to force U21 output low. Then Q5 is switched off and the voltage at “V_12” decreases until U21 input is low enough to restart a new cycle.

Linear regulator (5 V) for logic ICs

A linear regulator comprising NPN transistor Q6 (BCP55), Zener diode D7 (BZX84J-B5V6) and R11 provides a regulated V\textsubscript{CC} (5 V) rail for the logic ICs.
3.2. Clock and duty cycle generator

The Clock circuit comprises of:

- Crystal oscillator and frequency divider
- Duty cycle generator
- Frequency selection jumpers

Fig. 8. Clock, duty cycle and frequency selection
Crystal oscillator and frequency divider

A crystal oscillator is used for accuracy and stability. The oscillator frequency is 4 MHz. U1 (74HCT4060) is a frequency divider, used to obtain different frequencies from the 4 MHz. It provides outputs at:

- 62.5 kHz to drive the charge pump circuit (see Fig. 19)
- 31.3 kHz, 15.6 kHz and 7.8 kHz for the switching frequency (user selectable)

The switching frequency is selected by the multiplexer U3 (74HCT151) according to the jumper settings of JP7, JP8 and JP9.

Note: Only one jumper should be fitted at the same time.

The switching frequency output is labeled “Clock”.

A reset signal enables both multiplexer U3 and U19 (see next section for U19 explanation) when V_{CC} is 5 V.

Fig. 9. Oscillator and frequency divider
Duty cycle generator

Signals with a frequency 8 times higher than the required final switching frequencies are fed to 3 of the inputs of an 8-bit multiplexer IC, U19 (74HCT151). These are labeled “8*Frequency_duty_cycle step”.

Jumpers JP7, JP8, JP9 select both the switching frequency “Clock” and at the same time, “Frequency_duty_cycle step” which is a multiple (x8) of the switching frequency.

This higher frequency is used to create 8 duty cycle steps.

“Frequency_duty_cycle step” goes into the clock input of programmable timer U18 (74HC40103PW). U18 uses “Frequency_duty_cycle step” as a clock.

U18 output produce a duty cycle time in “duty_cycle_output” equals to the value read in input (P0 to P3) multiplied by the clock period.

“duty_cycle_output” is the general output of the Clock circuit.

![Diagram](image)

Table 1. Duty cycle selection

<table>
<thead>
<tr>
<th>P0 (1)</th>
<th>P1 (2)</th>
<th>P2 (4)</th>
<th>P3 (8)</th>
<th>Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12.5%</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>25%</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>37.5%</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>87.5%</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>

The signal “Clock” from U3 resets U18 at each new switching period. When reset, U18 will read inputs P0 to P3 and output a duty cycle in “duty_cycle_output” proportional to the settings.

The outputs of a 4-bit synchronous binary up/down counter U11 (74HC193) set the duty cycle value, it is the input of U18. Each time a rising edge appears on the UP input, the output value (Q0 to Q3) increases by 1, each time a rising edge appears on the DOWN input, output value (Q0 to Q3) decreases by 1.
H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs

The push buttons SW3 and SW1 with U10 and U22 (74HC1G125) create the rising edges on UP or DOWN input of U11, when the user releases the push button.

When U11 output reaches a maximum count of 9 (8 to 9 transition), (Q0 and Q3 =1), the "stop_up" output of U12 (74HC1G08) is set to 1 and U10 (74HC1G125) is deactivated (high impedance), any further impulses on SW3 can't produce a rising edge on UP input (U11) and the duty cycle reaches a maximum.

When U11 output reaches a minimum of 0 (Q0 to Q3 = 0), U17 (74HC1G08) "stop_down" output is set to 1 and U22 (74HC1G125) is deactivated (high impedance), any further impulses on SW1 can't produce a rising edge on DOWN input (U11) and the duty cycle reaches a minimum (after 0 the next counter value is 15, we need to stop the counter from setting duty cycle to a maximum).

3.3. Pulse Width Modulation

The PWM circuit consists of:

- PWM enable and reset
- Dead-time control
- Level shifting stage
- Direction selection

![PWM, dead-time, level shifting and direction selection](image)

Fig. 11. PWM, dead-time, level shifting and direction selection
Reset function

The reset function to activate other function when the V_{CC} (5 V) supply is stable.

When V_{CC} (5 V) reaches approximately 4 V, "Reset_signal" will go high after a delay set by C15. This validates all functions enabled by this signal. This ensures that all logic ICs will start with a clean V_{CC} (5 V).

Adjustable precision shunt regulator D22 (TL431BCDBZR) acts like a comparator. PNP transistor Q36 (BC857A) is a current source charging C15 when the threshold is reached.

MOSFET Q37 (2N7002) discharge C15 when V_{CC} (5 V) is no longer present.

The dual NPN/PNP resistor-equipped transistor Q38 (PUMD13) switches "Reset_signal" high when the voltage on C15 (delay setting) reaches a value high enough to turn on the NPN transistor (input, pin 2).
H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs

Dead-time function and PWM enable (over current protection disabling)

"duty_cycle_output" is the high side command (α) and "duty_cycle_output" is inverted by U20 (74HC1G14) to create the low side command ($1-\alpha$).

The duty cycle command is disabled by U6 (74HC125) through its input "PWM_EN" equal to 1 (over current protection switch U6 output in high impedance).

A dead time is controlled by U2 (74HC14) and RC filter. Q39, Q40 (2N7002) force the duty cycle to 0 when "PWM_EN" is 1.

Fig. 13. Dead-time function and PWM enable
H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs

Level shifter

Transistors Q9 and Q10 (BC846) interface the 5 V duty cycle signal to the high side and low side drivers (see Section 3.4).

Fig. 14. Level shifter

Direction selection

Switch SW2 selects the motor direction by activating either Q7 or Q8 (BC846BS).

Fig. 15. Direction selection

Q7 or Q8 are fully ON and activate one of the right MOSFETs: high side fully ON or low side fully ON.
3.4. Drive circuit

The drive circuit comprises of high-side and low-side drivers to drive the 4 power MOSFETs that form the full bridge.

Fig. 16. Driver circuit
H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs

High-side and low-side drivers

Two high side drivers supplied by the charge pump function and regulated at 9 V:

- Q19 (BC846), D15 (BZX84J-B10), C23, R45, Q21(BC846BPN) driven by “HS_Drive_R” for the right high side
- Q20 (BC846), D16(BZX84J-B10), C24, R46, Q22(BC846BPN) driven by “HS_Drive_L” for the left high side

Two Low side drivers supplied by the 12 V from the buck converter and regulated at 9 V

- Q16 (BC846), D11(BZX84J-B10), C18, R40 for the supply:
- Q18(BC846BPN) driven by “LS_Drive_L” for the left low side
- Q23 (BC846BPN) driven by “LS_Drive_R” for the right low side

Fig. 17. High side driver circuit

Fig. 18. Low side driver circuit
H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs

Charge pump to supply high side MOSFETs

A simple bootstrap function could be used to supply the high side MOSFETs but due to the fact the duty cycle could be 100% there is no time in this configuration to recharge the bootstrap capacitor if the high side MOSFET is fully ON (100% duty cycle) and the low side MOSFET is fully OFF.

The solution is to use a charge pump to supply the high side MOSFETs in every duty cycle configuration.

Fig. 19. Charge pump

“C_pump_refresh” from the clock function (see section Section 3.2) controls Q15 (BC846), Q17 (BC846BPN) with a frequency of 62.5 kHz, 50% duty cycle. The 9 V regulated from “LS_Supply_Rail” is applied on C19 bottom pin at 62.5 kHz, during 50% of the time, and 0 V during other 50% of the time.

Due to the fact, there is no fast voltage variation across a capacitor, there is always a voltage equals to “V_SUPPLY” across C19 (“V_SUPPLY” is the supply voltage of the H-bridge).

• When the bottom pin of C19 is 0 V, voltage across C19 is “V_SUPPLY”.
• When the bottom pin of C19 is 9 V, voltage across C19 is “V_SUPPLY” +9 V.

C21 and C22 are the filtering capacitor for the driver input voltage.
3.5. H-bridge

The H-bridge circuit comprises of:

- Power MOSFETs
- Reservoir and decoupling capacitors
- Snubber components
- Low side current measurement

Reservoir and decoupling capacitors

Decoupling capacitor (1 μF) and reservoir capacitor (220 μF) are used to filter the "V_SUPPLY".
Snubber on the left MOSFETs (switching MOSFETs)

RC Snubber footprint are implemented on the switching MOSFETs.

An additional RC snubber may be added to further reduce ringing, application note AN11160 gives an explanation about snubber calculation.

Fig. 21. Snubber circuit

Jumper to connect the required MOSFETs

Each MOSFET package is selected by soldering the following jumpers:

- LFPAK33: JP3, JP4
- LFPAK56D: JP1, JP6
- LFPAK56: JP2, JP5

Note: Solder only the jumpers needed to avoid incorrect operation!

Gate drive resistors

To avoid conflict between the switching MOSFETs gate resistors should be desoldered for those MOSFETs not in use.

Adjust the value of the gate resistor to reduce ringing or modify the switching time.

A resistor between gate and source of each MOSFET keeps the MOSFET off when there is no gate voltage applied.
Low side current measurement

A shunt resistor R16 (20 mΩ) measures the current in the H-bridge and provide a voltage proportional to the current to the over current protection input "IN-". A low pass filter R17, C13 filters the signal to avoid false triggering of the current limit circuit due to the noise spike.

3.6. Overcurrent detection

Overcurrent in the motor drive MOSFETs is prevented by comparing the current sense voltage with a reference voltage. In the case of overcurrent the PWM function is reset. The PWM function will be reactivated if the fault disappears.
Comparator, with voltage reference setting current limit

"IN+" is the maximum current setting input. "IN-" is the current measurement input reference.

R35 is a rudimentary current source for the comparator circuit.

Q13 (BCV61) is a current mirror, this means that the polarisation current from R35 is shared equally between the two current paths.

Q11 and Q12 (PMP5501Y) are configured as Darlington pairs to increase the gain to improve the sensitivity of the comparator.

Q11 is a differential pair.

- When IN+ > IN- the output (TP28) is high (no overcurrent)
- When IN+ < IN- the output (TP28) is low (overcurrent)

R33 and R34 set the current limitation, R32 adds hysteresis to avoid transitions due to the noise.
PWM reset

The PWM reset function reactivating the PWM circuit if fault disappears.

Fig. 25. PWM reset

When there is no overcurrent TP28 is high. “Reset_signal” is high since the VCC (5 V) is supplying the circuit. The output of AND gate U4 (74HC1G08) is high.

The signal “Clock” makes “PWM_EN” output from U8 (74HC74) switch to 0 at the first rising edge and stay at 0. U2 (74HC14) create a delay to have D input high before the rising edge on Cp).

If an overcurrent is detected by the comparator TP28 will switch to 0, TP29 will also switch to 0. Instantaneously “PWM_EN” will switch to 1 and force the duty cycle to be 0 (see section Dead-time function).

When the overcurrent disappears, TP28 and TP29 switch back to 1 and the next rising edge of “Clock” makes “PWM_EN” switch to 0 and the duty cycle is re-enabled.

This allows a cycle by cycle current limit behaviour from the circuit.
4. PCB top view

note: gate resistors R57, R58, R78, R79 and jumpers JP2, JP5 are fitted, selecting the MOSFETs in LFPAK56 package

Fig. 26. H-bridge motor controller PCB top-view
5. Schematics

![Schematics Diagram]

Fig. 27. Schematics overview
5.1. Power supply

Fig. 28. Power supply schematic
5.2. Clock

Frequency selection jumpers

Clock selection

Make xtal symmetrical and as close to IC as possible

Clock

Fig. 29. Clock schematic
5.3. Duty cycle

Fig. 30. Duty cycle schematic
5.4. PWM

PWM enable and reset

Dead-time control

Level shifter

Switch controls the direction in which the motor rotates

Control signals to H-bridge

Fig. 31. PWM schematic
5.5. Overcurrent detection

Fig. 32. Overcurrent detection schematic
5.6. H-bridge

- Caps ideally close to MOSFETs to smooth supply voltage.
- Add 10 Ohm resistors to use MOSFETs.
- Snubber mitigates ringing as MOSFETs are constantly switched on and off.

Fig. 33. H-bridge schematic
5.7. Driver circuit

High-side driving circuit

![High-side driving circuit diagram]

Low-side driving circuit

![Low-side driving circuit diagram]

Fig. 34. Driver stage schematic
6. Bill of materials (Nexperia parts)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2, D3, D5, D11, D15, D16</td>
<td>BZX84J-B10</td>
<td>Single Zener diode 10 V</td>
</tr>
<tr>
<td>D4, D9, D10, D19</td>
<td>BAS316</td>
<td>High-speed switching diodes</td>
</tr>
<tr>
<td>D6</td>
<td>PMEG10030ELP</td>
<td>100 V, 3 A low leakage current Schottky barrier rectifier</td>
</tr>
<tr>
<td>D7, D18, D20, D21</td>
<td>BZX84J-B5V6</td>
<td>Single Zener diodes 5.6 V</td>
</tr>
<tr>
<td>D8, D17</td>
<td>TVS60V81UTR</td>
<td>High-temperature 400 W Transient Voltage Suppressor</td>
</tr>
<tr>
<td>D12, D13, D14</td>
<td>PMEG6010ER</td>
<td>1 A low VF MEGA Schottky barrier rectifier</td>
</tr>
<tr>
<td>D22</td>
<td>TL431BCDBZ</td>
<td>Adjustable precision shunt regulator</td>
</tr>
<tr>
<td>Q1, Q2, Q5</td>
<td>BUK6Y33-60P</td>
<td>P-channel MOSFET in an LFPAK56 (Power SO8) package 60 V, 33 mΩ</td>
</tr>
<tr>
<td>Q3, Q9, Q10, Q15, Q16, Q19, Q20</td>
<td>BC846</td>
<td>65 V, 100 mA NPN general-purpose transistors</td>
</tr>
<tr>
<td>Q4, Q17, Q18, Q21, Q22, Q23</td>
<td>BC846BPW</td>
<td>65 V, 100 mA NPN/PNP general-purpose transistor</td>
</tr>
<tr>
<td>Q6</td>
<td>BCP55</td>
<td>60 V, 1 A NPN medium power transistor</td>
</tr>
<tr>
<td>Q7, Q8</td>
<td>BCP86BS</td>
<td>65 V, 100 mA NPN/NPN general-purpose transistor</td>
</tr>
<tr>
<td>Q11, Q12</td>
<td>PMP5501Y</td>
<td>PNP/PNP matched double transistors</td>
</tr>
<tr>
<td>Q13</td>
<td>BCV61</td>
<td>NPN general-purpose double transistors</td>
</tr>
<tr>
<td>Q14</td>
<td>BC847BS</td>
<td>45 V, 100 mA NPN/NPN general-purpose transistor</td>
</tr>
<tr>
<td>Q24, Q33</td>
<td>BUK7K12-60E</td>
<td>LFPAK56D, dual N-channel MOSFET</td>
</tr>
<tr>
<td>Q25, Q26, Q31, Q32</td>
<td>BUK7Y7R8-80E</td>
<td>LFPAK56, N channel MOSFET, 80 V, 7.8 mΩ</td>
</tr>
<tr>
<td>Q27, Q28, Q29, Q30</td>
<td>BUK7M9R9-60E</td>
<td>LFPAK33, N channel MOSFET</td>
</tr>
<tr>
<td>Q34, Q35, Q37, Q39, Q40</td>
<td>2N7002</td>
<td>60 V, 300 mA N-channel Trench MOSFET</td>
</tr>
<tr>
<td>Q36</td>
<td>BC857A</td>
<td>PNP general purpose transistors</td>
</tr>
<tr>
<td>Q38</td>
<td>PUMD13</td>
<td>NPN/PNP resistor-equipped transistors; R1 = 4.7 kΩ, R2 = 47 kΩ</td>
</tr>
<tr>
<td>U1</td>
<td>74HC4060PW</td>
<td>14-stage binary ripple counter with oscillator</td>
</tr>
<tr>
<td>U2</td>
<td>74HC14PW-Q100</td>
<td>Hex inverting Schmitt trigger</td>
</tr>
<tr>
<td>U3, U19</td>
<td>74HC151PW-Q100</td>
<td>8-input multiplexer</td>
</tr>
<tr>
<td>U4, U12, U17</td>
<td>74HC1G08GW-Q100</td>
<td>2-input AND gate</td>
</tr>
<tr>
<td>U6</td>
<td>74HC125PW-Q100</td>
<td>Quad buffer/line driver; 3-state</td>
</tr>
<tr>
<td>U8</td>
<td>74HC74PW-Q100</td>
<td>Dual D-type flip-flop with set and reset; positive-edge trigger</td>
</tr>
<tr>
<td>U9, U20, U21</td>
<td>74HC1G14GW-Q100</td>
<td>Inverting Schmitt trigger</td>
</tr>
<tr>
<td>U10, U22</td>
<td>74HC1G125GW-Q100</td>
<td>Bus buffer/line driver; 3-state</td>
</tr>
<tr>
<td>U11</td>
<td>74HC193PW-Q100</td>
<td>Presettable synchronous 4-bit binary up, down counter</td>
</tr>
<tr>
<td>U13, U14</td>
<td>74HC1G02GW-Q100</td>
<td>2-input NOR gate</td>
</tr>
<tr>
<td>U15, U16</td>
<td>74HC1G00GW-Q100</td>
<td>2-input NAND gate</td>
</tr>
<tr>
<td>U18</td>
<td>74HC40103PW</td>
<td>8-bit synchronous binary down counter</td>
</tr>
</tbody>
</table>
7. Bill of materials

Table 3. BOM

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Reference</th>
<th>Value</th>
<th>Footprint</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>C1, C2, C3, C4, C5, C6, C7, C8, C9, C18, C20, C23, C24, C39, C40, C44, C45, C46, C48, C49</td>
<td>1 µF</td>
<td>Capacitors_SMD: C_1206</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C10</td>
<td>47 µF</td>
<td>Capacitors_SMD: CP_Elec 6.3 x 5.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>C11, C12, C43</td>
<td>51 pF</td>
<td>Capacitors_SMD: C_0805</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>C13</td>
<td>100 pF</td>
<td>Capacitors_SMD: C_0805</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>C14, C41, C42</td>
<td>1 µF</td>
<td>Capacitors_SMD: C_0805</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>C15</td>
<td>470 nF</td>
<td>Capacitors_SMD: C_0805</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>C16, C17</td>
<td>2.2 nF</td>
<td>Capacitors_SMD: C_0805</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>C19, C21, C22, C26, C27, C34, C35, C36, C37, C38</td>
<td>1 µF</td>
<td>Capacitors_SMD: C_1206</td>
<td>100 V</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>C25, C47</td>
<td>220 µF</td>
<td>Capacitors_THT: CP_Radial_D 12.5 mm P 5.00 mm</td>
<td>100 V</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>C28, C29, C30, C31, C32, C33</td>
<td>* user selected</td>
<td>Capacitors_SMD: C_0805</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>C50, C51, C52, C53, C54, C55, C56, C57, C58, C59</td>
<td>1 µF</td>
<td>Capacitors_SMD: C_0805</td>
<td>100 V</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>D1, D2, D3, D5, D11, D15, D16</td>
<td>BZX84J-B10</td>
<td>Diodes_SMD: D_SOD-323 HandSoldering</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>D4, D9, D10, D19</td>
<td>BAS316</td>
<td>Diodes_SMD: D_SOD-323 HandSoldering</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>D6</td>
<td>PMEG10030ELP</td>
<td>Nexperia: SOD128</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>D7, D18, D20, D21</td>
<td>BZX84J-B5V6</td>
<td>Diodes_SMD: D_SOD-323 HandSoldering</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>D8, D17</td>
<td>PTVS60VS1UTR</td>
<td>Nexperia: D_SOD123W</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>D12, D13, D14</td>
<td>PMEG6010ER</td>
<td>Nexperia: D_SOD123W</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>D22</td>
<td>TL431BDBZBZ</td>
<td>TO_SOT_Packages_SMD: SOT-23</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>D23</td>
<td>LED</td>
<td>LEDs: LED_0603</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>J1</td>
<td>Conn_01x02</td>
<td>Connectors Phoenix: PhoenixContact_GMSTBVA-G 02 x 7.50 mm Vertical</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>J4</td>
<td>Conn_01x02_Female</td>
<td>Connectors Phoenix: PhoenixContact_GMSTBVA-G 02 x 7.50 mm Vertical</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>L1</td>
<td>390 µH</td>
<td>Inductors_THT: L_Radial_D 10.0 mm P 5.00 mm Fastron_07M</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>MK1, MK2, MK3, MK4</td>
<td>Mounting_Hole</td>
<td>Mounting_Holes:MountingHole 4.3 mm M4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>Q1, Q2, Q5</td>
<td>BUK6Y33-60P</td>
<td>TO_SOT_Packages_SMD: SOT-669_LFPAK</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>7</td>
<td>Q3, Q9, Q10, Q15, Q16, Q19, Q20</td>
<td>BC846</td>
<td>TO_SOT_Packages_SMD: SOT-23</td>
<td></td>
</tr>
</tbody>
</table>
H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Reference</th>
<th>Value</th>
<th>Footprint</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>6</td>
<td>Q4, Q17, Q18, Q21, Q22, Q23</td>
<td>BC846BPN</td>
<td>TO_SOT_Packages_SMD: SOT-363_SC-70-6 Handsoldering</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>Q6</td>
<td>BCP55</td>
<td>TO_SOT_Packages_SMD: SOT-223 3Lead TabPin2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>Q7, Q8</td>
<td>BC846BS</td>
<td>TO_SOT_Packages_SMD: SOT-363_SC-70-6 Handsoldering</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>Q11, Q12</td>
<td>PMP5001Y</td>
<td>TO_SOT_Packages_SMD: SOT-363_SC-70-6 Handsoldering</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>Q13</td>
<td>BCV61</td>
<td>Nexperia: SOT-143B</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>Q14</td>
<td>BC847BS</td>
<td>TO_SOT_Packages_SMD: SOT-363_SC-70-6 Handsoldering</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>Q24, Q33</td>
<td>BUK7K12-60E</td>
<td>Nexperia: LFPAK56D</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>Q25, Q26, Q31, Q32</td>
<td>BUK7Y7R8-80E</td>
<td>TO_SOT_Packages_SMD: SOT-669_LFPAK</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>Q27, Q28, Q29, Q30</td>
<td>BUK7M9R9-60E</td>
<td>Nexperia: LFPAK33</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>5</td>
<td>Q34, Q35, Q37, Q39, Q40</td>
<td>2N7002</td>
<td>TO_SOT_Packages_SMD: SOT-23</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>Q36</td>
<td>BC857A</td>
<td>TO_SOT_Packages_SMD: SOT-23</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>Q38</td>
<td>PUMD13</td>
<td>TO_SOT_Packages_SMD: SOT-363 SC-70-6 Handsoldering</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>R1, R2</td>
<td>Resistors_SMD: R_1206</td>
<td>10 kΩ</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>14</td>
<td>R3, R11, R17, R19, R23, R29, R30, R34, R39, R40, R42, R48, R50, R87</td>
<td>Resistors_SMD: R_0805</td>
<td>1 kΩ</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>34</td>
<td>R4, R6, R12, R13, R14, R20, R24, R36, R37, R44, R45, R46, R47, R49, R51, R52, R55, R56, R59, R62, R63, R70, R71, R76, R77, R81, R82, R83, R86, R88, R89, R91, R92, R104</td>
<td>Resistors_SMD: R_0805</td>
<td>10 kΩ</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>R5, R7, R18, R21, R22, R27, R28, R31, R38, R41</td>
<td>Resistors_SMD: R_0805</td>
<td>4.7 kΩ</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>R8, R60, R66, R68, R69, R74</td>
<td>Resistors_SMD: R_0805</td>
<td>* user selected</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>R9, R108, R109</td>
<td>Resistors_SMD: R_0805</td>
<td>100 Ω</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>R10</td>
<td>Resistors_SMD: R_1206</td>
<td>20 kΩ</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4</td>
<td>R15, R43, R80, R93</td>
<td>Resistors_SMD: R_0805</td>
<td>1 MΩ</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>R16</td>
<td>Resistors_SMD: R_2512</td>
<td>20 mΩ</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3</td>
<td>R25, R26, R101</td>
<td>Resistors_SMD: R_0805</td>
<td>2.2 kΩ</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>4</td>
<td>R32, R61, R67, R96</td>
<td>Resistors_SMD: R_0805</td>
<td>100 kΩ</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>R33</td>
<td>Resistors_SMD: R_0805</td>
<td>51 kΩ</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>R35</td>
<td>Resistors_SMD: R_0805</td>
<td>47 kΩ</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>17</td>
<td>R53, R54, R57, R58, R64, R65, R72, R73, R78, R79, R84, R85, R90, R103, R105, R106, R107</td>
<td>Resistors_SMD: R_0805</td>
<td>10 Ω</td>
<td></td>
</tr>
</tbody>
</table>
H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Reference</th>
<th>Value</th>
<th>Footprint</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>1</td>
<td>R75</td>
<td>510 kΩ</td>
<td>Resistors_SMD: R_0805</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>4</td>
<td>R94, R97, R99, R100</td>
<td>1.5 kΩ</td>
<td>Resistors_SMD: R_0805</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>R95</td>
<td>2.4 kΩ</td>
<td>Resistors_SMD: R_0805</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>R98, R102</td>
<td>5 kΩ</td>
<td>Resistors_SMD: R_0805</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>R110</td>
<td>500 Ω</td>
<td>Resistors_SMD: R_0805</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>2</td>
<td>SW1, SW3</td>
<td>SW_Push</td>
<td>Buttons_Switches_SMD: SW_DIP_x1_W 8.61 mm_Slide_LowProfile</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>SW2</td>
<td>SW_DPDT_x2</td>
<td>Buttons_Switches_THT: SW_CuK_JS202011CQN_DPDT_Straight</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>U1</td>
<td>74HC4060PW</td>
<td>Housings_SSOP: TSSOP-16 4.4 x 5 mm Pitch 0.65 mm</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>U2</td>
<td>74HC14PW-Q100</td>
<td>Housings_SSOP: TSSOP-14 4.4 x 5 mm_Pitch 0.65mm</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>U3, U19</td>
<td>74HC151PW-Q100</td>
<td>Housings_SSOP: TSSOP-16 4.4 x 5 mm Pitch 0.65 mm</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>3</td>
<td>U4, U12, U17</td>
<td>74HC1G08GW-Q100</td>
<td>TO_SOT_Packages_SMD: SOT-353_SC-70-5</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>U6</td>
<td>74HC125PW-Q100</td>
<td>Housings_SSOP: TSSOP-14 4.4 x 5mm Pitch 0.65 mm</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1</td>
<td>U8</td>
<td>74HC74PW-Q100</td>
<td>Housings_SSOP: TSSOP-14 4.4 x 5 mm Pitch 0.65 mm</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>3</td>
<td>U9, U20, U21</td>
<td>74HC1G14GW-Q100</td>
<td>TO_SOT_Packages_SMD: SOT-353_SC-70-5</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>2</td>
<td>U10, U22</td>
<td>74HC1G125GW-Q100</td>
<td>TO_SOT_Packages_SMD: SOT-353_SC-70-5</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>U11</td>
<td>74HC193PW-Q100</td>
<td>Housings_SSOP: TSSOP-16 4.4 x 5mm Pitch 0.65 mm</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>2</td>
<td>U13, U14</td>
<td>74HC1G02GW-Q100</td>
<td>TO_SOT_Packages_SMD: SOT-353_SC-70-5</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>U15, U16</td>
<td>74HC1G00GW-Q100</td>
<td>TO_SOT_Packages_SMD: SOT-353_SC-70-5</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>U18</td>
<td>74HC40103PW</td>
<td>Housings_SSOP: TSSOP-16 4.4 x 5 mm Pitch 0.65 mm</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1</td>
<td>Y1</td>
<td>Crystal</td>
<td>Crystals: Crystal_SMD_HC49-SD</td>
<td></td>
</tr>
</tbody>
</table>

8. Revision history

Table 4. Revision history

<table>
<thead>
<tr>
<th>Revision number</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>20200214</td>
<td>Schematic diagrams, text and BOMs updated to latest type numbers for Q1,Q2 and Q5</td>
</tr>
<tr>
<td>2.0</td>
<td>20190422</td>
<td>Schematic diagrams updated to correct IC type numbers</td>
</tr>
<tr>
<td>1.0</td>
<td>20190215</td>
<td>Initial version of the document</td>
</tr>
</tbody>
</table>
9. Legal information

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
List of Tables

Table 1. Duty cycle selection... 9
Table 2. BOM (Nexperia parts)... 31
Table 3. BOM... 32
Table 4. Revision history.. 34
List of Figures

Fig. 1. Simplified MOSFET H-bridge motor control..............2
Fig. 2. H-bridge motor controller block diagram..................3
Fig. 3. Power supply circuit..4
Fig. 4. Transient overvoltage protection..........................4
Fig. 5. Reverse polarity protection................................5
Fig. 6. Buck converter..6
Fig. 7. Linear regulator...6
Fig. 8. Clock, duty cycle and frequency selection...............7
Fig. 9. Oscillator and frequency divider..........................8
Fig. 10. Duty cycle...9
Fig. 11. PWM, dead-time, level shifting and direction selection...10
Fig. 12. Reset circuit..11
Fig. 13. Dead-time function and PWM enable....................12
Fig. 14. Level shifter...13
Fig. 15. Direction selection..13
Fig. 16. Driver circuit..14
Fig. 17. High side driver circuit.....................................15
Fig. 18. Low side driver circuit.....................................15
Fig. 19. Charge pump..16
Fig. 20. H-bridge...17
Fig. 21. Snubber circuit..18
Fig. 22. Current measurement..19
Fig. 23. Overcurrent detection..19
Fig. 24. Comparator, with voltage reference......................20
Fig. 25. PWM reset..21
Fig. 26. H-bridge motor controller PCB top-view..............22
Fig. 27. Schematics overview...23
Fig. 28. Power supply schematic....................................24
Fig. 29. Clock schematic...25
Fig. 30. Duty cycle schematic..26
Fig. 31. PWM schematic..27
Fig. 32. Overcurrent detection schematic........................28
Fig. 33. H-bridge schematic..29
Fig. 34. Driver stage schematic......................................30
Contents

1. Introduction...2
2. Block diagram and system functionality..................... 3
2.1. Subsystems overview.. 3
3. Subsystem descriptions.. 4
3.1. Power supply..4
3.2. Clock and duty cycle generator............................... 7
3.3. Pulse Width Modulation...10
3.4. Drive circuit...14
3.5. H-bridge...17
3.6. Overcurrent detection...19
4. PCB top view..22
5. Schematics...23
5.1. Power supply..24
5.2. Clock..25
5.3. Duty cycle..26
5.4. PWM...27
5.5. Overcurrent detection..28
5.6. H-bridge...29
5.7. Driver circuit..30
6. Bill of materials (Nexperia parts)..............................31
7. Bill of materials..32
8. Revision history..34
9. Legal information..35

© Nexperia B.V. 2020. All rights reserved
For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 14 February 2020