Document information

<table>
<thead>
<tr>
<th>Information</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>LFPAK, MOSFET, thermal resistance, simulation, PCB design</td>
</tr>
<tr>
<td>Abstract</td>
<td>This technical note considers the thermal modeling of Nexperia LFPAK MOSFETs. Different Printed Circuit Board materials and layouts are considered.</td>
</tr>
</tbody>
</table>
1 Introduction

MOSFET data sheets contain a parameter $R_{\text{th(j-a)}}$ which is the thermal resistance from junction to ambient. This is a guide to how much heat can be dissipated from the device to its surroundings in a typical application. For a surface-mounted device such as an LFPAK MOSFET this is highly dependent on the type of Printed Circuit Board (PCB) on which it is mounted. The type of PCB material, the thickness of copper and the shape of the copper footprint all contribute to $R_{\text{th(j-a)}}$.

This technical note looks at the structure of an LFPAK MOSFET and the way it is mounted on a PCB. It uses thermal modelling techniques to analyse how heat, generated inside the device, is transferred to its surroundings. Various circuit layouts are considered and tested so that developers can use an accurate value for $R_{\text{th(j-a)}}$ that closely reflects practical applications.

2 Definition of Thermal Resistance $R_{\text{th(j-a)}}$

$R_{\text{th(j-a)}}$ is the thermal resistance from working surface of the silicon crystal to the surrounding environment. It is a value that represents the net effect of all the possible series and parallel paths from the semiconductor junction to ambient and includes heat transfer by means such as conduction, convection and radiation.

$R_{\text{th(j-a)}}$ is defined as the temperature difference between junction and ambient that transfers one watt of power to the environment. It is given by:

$$R_{\text{th(j-a)}} = \frac{(T_j - T_a)}{P}$$

where:

- $R_{\text{th(j-a)}}$ is measured in K/W
- T_j is the junction temperature (°C)
- T_a is the ambient temperature (°C)
- P is the heating power dissipated inside the MOSFET (W)
3 Test method

The method used to measure $R_{\text{th(j-a)}}$ is defined by JEDEC standard 51-2A. The Device Under Test (DUT) is soldered to a FR4 test board and placed in the geometric centre of the test enclosure as shown in Figure 1 and Figure 2. The enclosure comprises a 305 mm cube made from low thermal conductivity materials such as cardboard, polycarbonate, polypropylene, wood, etc.

![Figure 1. Test enclosure - left side view](image)

![Figure 2. Isometric view of the PCB and test fixture](image)

3.1 Heat transfer in the JEDEC enclosure

Within the JEDEC enclosure, heat is transferred from the DUT to the PCB and surroundings by three basic mechanisms; conduction, convection and radiation.

Conduction is the process by which heat transfers from high temperature parts to low temperature parts that are in contact with each other. Figure 3 shows how heat is transferred from the semiconductor junction to the copper clip and from the clip to the encapsulant. Also, from the junction through the silicon die to the mounting base, and from the mounting base to the PCB.

Convection refers to the heat transfer process caused by displacement of air surrounding the test fixture. The movement is caused by the tendency of hotter and therefore less
dense air to rise, and colder, denser air to sink under the influence of gravity, which consequently results in transfer of heat.

Radiation does not depend on contact as heat conduction and convection do. Thermal radiation is when an object loses energy in the form of electromagnetic radiation from the infrared part of the spectrum. In the example shown in Figure 3, heat is radiated from the surfaces of the MOSFET and the PCB into the space inside the box.

Figure 3. LFPAK MOSFET - heat transfer model

The measured thermal resistance of a MOSFET, $R_{\text{th(j-a)}}$, depends upon the package size, the material properties and the internal structure of the device. It also depends on the PCB that is used in the test fixture. Modern surface-mount MOSFETs are designed to use the PCB as a heat sink and rely on the copper traces to spread the heat over a large area to assist with cooling.

SMD Power MOSFET data sheets usually specify two values for $R_{\text{th(j-a)}}$ – one with a minimum footprint that conforms with the JEDEC standard, and another with a 25.4 mm square of 70 µm thick copper on the top surface.

Table 1. $R_{\text{th(j-a)}}$ specification in a data sheet

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{th(j-a)}}$</td>
<td>thermal resistance from junction to ambient</td>
<td>Mounted on a 25.4 mm2 square copper, 70 µm thick, FR4 1.5 mm thick PCB</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mounted on a minimum footprint, 70 µm copper, FR4 1.5 mm thick PCB</td>
<td>-</td>
<td>125</td>
<td>-</td>
<td>K/W</td>
</tr>
</tbody>
</table>
4 MOSFET drain-source current path

Modern power MOSFETS have an ‘on’ resistance in the order of milliohms and surface-mount variants are capable of switching hundreds of Amperes. In these cases consideration must be given to the Joule heating effect of the current as it flows through the device and also the PCB traces.

Figure 4, below, shows the current path through a LFPAK MOSFET. The clip is attached directly to the semiconductor junction and at low current it acts as a heat sink, conducting heat away from the junction to the PCB. At high current, however, it becomes heated by its own resistance and requires cooling by being connected to a cooling surface connected to the source.

![Figure 4. LFPAK package MOSFET current path shown](image-url)
5 PCB trace width calculations

To examine the heating effect of the PCB trace let us consider as an example a Nexperia LFPAK MOSFET, PSMN1R0-30YLD. This has an ‘on’ resistance of 1 milliohm and at a typical current of 55 A the power dissipation, given by I^2R will be $55^2 \times 0.001 = 3$ W. This is easily dissipated by the PCB if it has a small amount of copper to spread the heat.

If we use the IPC2221 trace width calculator to work out the size of trace required to carry 55 A and allow a manageable 30 °C rise in the trace temperature, then assuming 70 µm (2 oz) thick copper, Figure 5 shows that a trace almost 20 mm wide is required.

![Figure 5. IPC-2221 trace width calculator](image-url)
6 Board layout optimisation

A number of thermal simulations have been carried out using a PSMN1R0-30YLD as an example to find the optimum PCB layout that extracts the maximum amount of heat from the device and therefore gives the lowest possible value for $R_{\text{th(j-a)}}$. All the simulations were on a 25.4 mm square of 70 µm thick copper. The MOSFET was fully turned on with a constant current that produced 3 W loss in the device.

The investigation examined different positions of the MOSFET within the copper square. It also considered allocating different percentages of the copper square to the source and drain. Finally, it examined the heating effect of trace width on the temperature of the MOSFET and the consequences for $R_{\text{th(j-a)}}$ measurement.

6.1 Test layout 1

In Figure 6 and Figure 7, the device is mounted on the edge of a 25.4 mm square copper pad.

$R_{\text{th(j-a)}} = 41.8 \, \text{K/W}$ according to the simulation result.

This layout assumes that the main heat transfer path is from the junction, through the silicon die to the mounting base. All of the copper pad is allocated to cooling the mounting base. We see from the thermal profile that very little heat reaches parts of the copper furthest away from the MOSFET and these contribute little to the cooling. The source trace is very hot because of inefficient cooling of the source pins. This is evidently not an optimum solution resulting in a relatively high value for $R_{\text{th(j-a)}}$.

Table 2. Test layout 1 and surface temperature profile

![Figure 6. Test layout 1](image1)

![Figure 7. Surface temperature profile](image2)
6.2 Test layout 2

The test layout of Figure 8 and Figure 9 shows the MOSFET mounted in the middle of the 25.4 mm copper square with the copper area divided equally between source and drain.

The simulation result gives $R_{\text{th(j-a)}} = 39.1 \, \text{K/W}$

Placing the device in the middle of the copper has improved the cooling and reduced the thermal resistance. However, the copper area connected to the drain tab is hotter than that connected to the source pins which suggest that more heat flows through the drain tab. Selecting the proper ratio of source to drain copper is important to obtain the optimum $R_{\text{th(j-a)}}$ value.

Table 3. Test layout 2 and surface temperature profile
6.3 Test layouts 3, 4 and 5

In Figure 10, Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 different layouts examine the effect of various trace widths for the source connection.

Layout 3 has the MOSFET located in the centre of the copper pad and the Joule heating effect of the source trace is not considered.

The simulated result gives $R_{\text{th(j-a)}} = 38.6 \text{ K/W}$

Table 4. Test layout 3 and surface temperature profile

![Figure 10. Test layout 3](image)

![Figure 11. Surface temperature profile](image)

But in a practical working circuit when low R_{DSon} MOSFETs are fitted, the drain-source current can reach tens or even hundreds of Amperes, and the heat generated in the PCB traces cannot be neglected.

Test layout 4 shows what happens when the Joule heating of the source trace is taken into account. In this case the trace width is 0.8 mm. The power loss in the MOSFET is 3 W as before, but the power loss in the trace is 8.8 W. Figure 13 shows the rise in temperature of the source trace which is higher than the die temperature of the MOSFET and is therefore heated significantly.

The simulated $R_{\text{th(j-a)}}$ is 92.4 K/W
Test layout 5 has the source trace increased to 3 mm. The test conditions are the same as in layout 4. This time the power loss in the source trace is reduced to 2.4 W but Figure 15 shows that the temperature still exceeds that of the die.

The simulated result for $R_{th(j-a)}$ is 56.7 K/W.

We can deduce from test layouts 4 and 5 that in a practical application involving an LFPAK MOSFET careful consideration must be given to trace thickness and width so that the Joule heating of the current path does not contribute to the heating of the MOSFET.
6.4 Optimal circuit board layout 6

Test layout 6, shown in Figure 16, attempts to optimise the copper traces to obtain the lowest possible $R_{th(j-a)}$. Approximately 1/3 of the 25.4 mm copper pad is allocated to the source pins whilst the width of the source trace is a maximum.

The simulation result gives $R_{th(j-a)} = 37.1 \text{ K/W}$.

Table 7. Test layout 6 and surface temperature profile

![Figure 16. Test layout 6](image1.png)

![Figure 17. Surface temperature profile](image2.png)
7 Conclusion

LFPAK MOSFETS are designed to be soldered to a heat sink. In this case the heat sink is formed from the copper traces that make the electrical connections. This means that care must be taken in the design of the PCB and the layout of the copper traces that connect to the MOSFET. This becomes more important as the current handling capabilities of MOSFETs increases. It is now possible for a LFPAK MOSFET such as PSMN1R0-30YLD to carry 300 A and therefore not only the heat sinking properties of the copper, but the current-carrying capabilities must be taken into account by the designer.

8 Reference documents

- PSMN1R0-30YLD data sheet
- JEDEC 51-2A
- PCB trace width calculator

9 Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN90001 v.1</td>
<td>20180517</td>
<td>Initial version</td>
</tr>
</tbody>
</table>
10 Legal information

10.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and proper operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

10.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Nexperia

LFPACK MOSFET thermal resistance $R_{th(j-a)}$ simulation, test and optimisation of PCB layout

Tables

<table>
<thead>
<tr>
<th>Tab.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab. 1</td>
<td>$R_{th(j-a)}$ specification in a data sheet</td>
</tr>
<tr>
<td>Tab. 2</td>
<td>Test layout 1 and surface temperature profile</td>
</tr>
<tr>
<td>Tab. 3</td>
<td>Test layout 2 and surface temperature profile</td>
</tr>
<tr>
<td>Tab. 4</td>
<td>Test layout 3 and surface temperature profile</td>
</tr>
<tr>
<td>Tab. 5</td>
<td>Test layout 4 and surface temperature profile</td>
</tr>
<tr>
<td>Tab. 6</td>
<td>Test layout 5 and surface temperature profile</td>
</tr>
<tr>
<td>Tab. 7</td>
<td>Test layout 6 and surface temperature profile</td>
</tr>
<tr>
<td>Tab. 8</td>
<td>Revision history</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Test enclosure - left side view</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Isometric view of the PCB and test fixture</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>LFPACK MOSFET - heat transfer model</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>LFPACK package MOSFET current path shown</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>IPC-2221 trace width calculator</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Test layout 1</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Surface temperature profile</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Test layout 2</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Surface temperature profile</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Test layout 3</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Surface temperature profile</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>Test layout 4</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>Surface temperature profile</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>Test layout 5</td>
</tr>
<tr>
<td>Fig. 15</td>
<td>Surface temperature profile</td>
</tr>
<tr>
<td>Fig. 16</td>
<td>Test layout 6</td>
</tr>
<tr>
<td>Fig. 17</td>
<td>Surface temperature profile</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 2
2 Definition of Thermal Resistance R_{\text{th(j-a)}} 2
3 Test method ...3
 3.1 Heat transfer in the JEDEC enclosure3
4 MOSFET drain-source current path5
5 PCB trace width calculations6
6 Board layout optimisation7
 6.1 Test layout 1 ..7
 6.2 Test layout 2 ...8
 6.3 Test layouts 3, 4 and 59
 6.4 Optimal circuit board layout 611
7 Conclusion ...12
8 Reference documents ..12
9 Revision history ...12
10 Legal information ...13