PSMNR89-25YLE
N-channel 25 V, 0.98 mOhm, ASFET for hotswap with enhanced SOA in LFPAK56
10 January 2023
Product data sheet

1. General description

N-channel enhancement mode ASFET for hotswap with enhanced SOA in LFPAK56 package optimized for low R_{DSon} and strong safe operating area, optimized for hot-swap, inrush and linear-mode applications.

2. Features and benefits

- Fully optimized Safe Operating Area (SOA) for superior linear mode operation
- Optimized for low R_{DSon} / low I^2R conduction losses
- LFPAK56 package for applications that demand the highest performance and reliability in a 30 mm² footprint
- Low leakage <1 µA at 25 °C
- Copper-clip for low parasitic inductance and resistance
- High reliability LFPAK package, qualified to 175 °C

3. Applications

- Hot swap in 12 V - 20 V applications
- e-Fuse
- DC switch
- Load switch
- Battery protection

4. Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS}</td>
<td>drain-source voltage</td>
<td>$25 , ^\circ C \leq T_j \leq 175 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>drain current</td>
<td>$V_{GS} = 10 , V; T_{mb} = 25 , ^\circ C$; $Fig. , 2$</td>
<td>-</td>
<td>-</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>$T_{mb} = 25 , ^\circ C$; $Fig. , 1$</td>
<td>-</td>
<td>-</td>
<td>224</td>
<td>W</td>
</tr>
<tr>
<td>T_j</td>
<td>junction temperature</td>
<td></td>
<td>-55</td>
<td>-</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Static characteristics

- R_{DSon}: $V_{GS} = 10 \, V; I_D = 25 \, A; T_j = 25 \, ^\circ C$; $Fig. \, 10$
 - Min: 0.85 mΩ
 - Typ: 0.98 mΩ

- R_{DSon}: $V_{GS} = 7 \, V; I_D = 25 \, A; T_j = 25 \, ^\circ C$; $Fig. \, 10$
 - Min: 1.13 mΩ
 - Typ: 1.35 mΩ

Dynamic characteristics

- Q_{GD}: $I_D = 25 \, A; V_{DS} = 12 \, V; V_{GS} = 4.5 \, V$; $T_j = 25 \, ^\circ C$; $Fig. \, 12$; $Fig. \, 13$
 - Min: 1.8 nC
 - Typ: 10 nC
 - Max: 20 nC

- $Q_{G(tot)}$: $I_D = 25 \, A; V_{DS} = 12 \, V; V_{GS} = 4.5 \, V$; $T_j = 25 \, ^\circ C$; $Fig. \, 12$; $Fig. \, 13$
 - Min: 15 nC
 - Typ: 33 nC
 - Max: 54 nC
N-channel 25 V, 0.98 mOhm, ASFET for hotswap with enhanced SOA in LFPAK56

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Source-drain diode

| | | | | | |
--- | --- | --- | --- | --- | --- | ---
S | softness factor | | | | |

| | | | | | |
--- | --- | --- | --- | --- | --- | ---
I_S = 25 A; dI_S/dt = -100 A/µs; V_GS = 0 V; V_DS = 12 V; T_J = 25 °C; **Fig. 16** | - | 1 | - | |

[1] 270 A continuous current has been successfully demonstrated during application tests. Practically the current will be limited by PCB, thermal design and operating temperature.

5. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1 | S | source | | |
2 | S | source | | |
3 | S | source | | |
4 | G | gate | | |
mb | D | mounting base; connected to drain | | |

6. Ordering information

Type number	Package	Description	Version
PSMNR89-25YLE | LFPAK56; Power-SO8 | plastic, single-ended surface-mounted package; 4 terminals | SOT669 |

7. Marking

Type number	Marking code
PSMNR89-25YLE | E89L25Y |

8. Limiting values

Symbol	Parameter	Conditions	Min	Max	Unit
V_DS | drain-source voltage | 25 °C ≤ T_J ≤ 175 °C | - | 25 | V |
V_DGR | drain-gate voltage | 25 °C ≤ T_J ≤ 175 °C; R_GS = 20 kΩ | - | 25 | V |
V_GS | gate-source voltage | -20 | 20 | V |
P_tot | total power dissipation | T_mb = 25 °C; **Fig. 1** | - | 224 | W |
I_D | drain current | V_GS = 10 V; T_mb = 25 °C; **Fig. 2** | [1] - | 270 | A |
I_D | peak drain current | pulsed; I_P ≤ 10 µs; T_mb = 25 °C; **Fig. 3** | - | 1359 | A |
T_stg | storage temperature | -55 | 175 | °C |
T_j | junction temperature | -55 | 175 | °C |

In accordance with the Absolute Maximum Rating System (IEC 60134). T_J = 25 °C unless otherwise stated.
### Symbol	Parameter	Conditions	Min	Max	Unit
$T_{\text{std(M)}}$ | peak soldering temperature | - | 260 | °C

Source-drain diode

- I_S | source current $T_{mb} = 25 \, ^\circ C$ | - | 224 | A
- I_{SM} | peak source current pulsed; $t_p \leq 10 \, \mu s$ $T_{mb} = 25 \, ^\circ C$ | - | 1359 | A

Avalanche ruggedness

- $E_{DS(AL)S}$ | non-repetitive drain-source avalanche energy $I_D = 25 \, A$ $V_{sup} \leq 25 \, V$ $R_{GS} = 50 \, \Omega$ $V_{GS} = 10 \, V$ $T_{j(init)} = 25 \, ^\circ C$ unclamped; $t_p = 5 \, ms$ | [2] | - | 2.1 | J
- I_{AS} | non-repetitive avalanche current $V_{sup} \leq 25 \, V$ $V_{GS} = 10 \, V$ $T_{j(init)} = 25 \, ^\circ C$ $R_{GS} = 50 \, \Omega$ | [2] | - | 123 | A

[1] 270 A continuous current has been successfully demonstrated during application tests. Practically the current will be limited by PCB, thermal design and operating temperature.

[2] Protected by 100% test.

Fig. 1. Normalized total power dissipation as a function of mounting base temperature

Fig. 2. Continuous drain current as a function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25\,^\circ C)}} \times 100\%$$

$V_{GS} \geq 10 \, V$

(1) 270 A continuous current has been successfully demonstrated during application tests. Practically the current will be limited by PCB, thermal design and operating temperature.
9. Thermal characteristics

Table 6. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{th(j-mb)}}$</td>
<td>thermal resistance from junction to mounting base</td>
<td>Fig. 4</td>
<td>-</td>
<td>0.4</td>
<td>0.67</td>
<td>K/W</td>
</tr>
<tr>
<td>$R_{\text{th(j-a)}}$</td>
<td>thermal resistance from junction to ambient</td>
<td>Fig. 5, 6</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Fig. 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

$T_{\text{mb}} = 25 ^\circ \text{C}$ (solid black line); $T_{\text{mb}} = 125 ^\circ \text{C}$ (red dashed line); I_{DM} is a single pulse

Fig. 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage
Table 7. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{(BR)DSS}</td>
<td>drain-source breakdown voltage</td>
<td>I_D = 250 μA; V_{GS} = 0 V; T_j = 25 °C</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D = 250 μA; V_{GS} = 0 V; T_j = -55 °C</td>
<td>22.5</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{GS(th)}</td>
<td>gate-source threshold voltage</td>
<td>I_D = 2 mA; V_{DS}=V_{GS}; T_j = 25 °C</td>
<td>1.2</td>
<td>1.96</td>
<td>2.2</td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{GS(th)}/ΔT</td>
<td>gate-source threshold voltage variation with temperature</td>
<td>25 °C ≤ T_j ≤ 150 °C</td>
<td>-</td>
<td>-3.8</td>
<td>-</td>
<td>mV/K</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>drain leakage current</td>
<td>V_{DS} = 20 V; V_{GS} = 0 V; T_j = 25 °C</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DS} = 20 V; V_{GS} = 0 V; T_j = 125 °C</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>gate leakage current</td>
<td>V_{GS} = 16 V; V_{DS} = 0 V; T_j = 25 °C</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS} = -16 V; V_{DS} = 0 V; T_j = 25 °C</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>R_{DSon}</td>
<td>drain-source on-state resistance</td>
<td>V_{GS} = 10 V; I_D = 25 A; T_j = 25 °C; Fig. 10</td>
<td>-</td>
<td>0.85</td>
<td>0.98</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS} = 10 V; I_D = 25 A; T_j = 150 °C; Fig. 11</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS} = 7 V; I_D = 25 A; T_j = 25 °C; Fig. 10</td>
<td>-</td>
<td>1.13</td>
<td>1.35</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS} = 7 V; I_D = 25 A; T_j = 150 °C; Fig. 11</td>
<td>-</td>
<td>-</td>
<td>2.4</td>
<td>mΩ</td>
</tr>
<tr>
<td>R_G</td>
<td>gate resistance</td>
<td>f = 1 MHz; T_j = 25 °C</td>
<td>1.2</td>
<td>3.1</td>
<td>7.7</td>
<td>Ω</td>
</tr>
<tr>
<td>Q_{G(tot)}</td>
<td>total gate charge</td>
<td>I_D = 25 A; V_{DS} = 12 V; V_{GS} = 4.5 V; T_j = 25 °C; Fig. 12; Fig. 13</td>
<td>15</td>
<td>33</td>
<td>54</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D = 25 A; V_{DS} = 12 V; V_{GS} = 10 V; T_j = 25 °C; Fig. 12; Fig. 13</td>
<td>33</td>
<td>73</td>
<td>120</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D = 0 A; V_{DS} = 0 V; V_{GS} = 10 V; T_j = 25 °C</td>
<td>-</td>
<td>37</td>
<td>-</td>
<td>nC</td>
</tr>
</tbody>
</table>
Symbol | Parameter | Conditions | Min | Typ | Max | Unit
--- | --- | --- | --- | --- | --- | ---
Q_{GS} | gate-source charge | $I_D = 25 \, A; \, V_{DS} = 12 \, V; \, V_{GS} = 4.5 \, V; \, T_J = 25 \, ^\circ C; \, Fig. \, 12; \, Fig. \, 13$ | 4.3 | 16 | 31 | nC
$Q_{GS(th)}$ | pre-threshold gate-source charge | | 2 | 7.6 | 14 | nC
$Q_{GS(th-pl)}$ | post-threshold gate-source charge | | 2.2 | 8.5 | 16 | nC
Q_{GD} | gate-drain charge | $I_D = 25 \, A; \, V_{DS} = 12 \, V; \, T_J = 25 \, ^\circ C; \, Fig. \, 12; \, Fig. \, 13$ | 106 | 391 | 938 | pF
$V_{GS(pl)}$ | gate-source plateau voltage | | - | 3.5 | - | V
C_{iss} | input capacitance | $V_{DS} = 12 \, V; \, V_{GS} = 0 \, V; \, f = 1 \, MHz; \, T_J = 25 \, ^\circ C; \, Fig. \, 12; \, Fig. \, 13$ | 2981 | 4968 | 7452 | pF
C_{oss} | output capacitance | $T_J = 25 \, ^\circ C; \, Fig. \, 14$ | 1261 | 2101 | 3152 | pF
C_{rss} | reverse transfer capacitance | $V_{DS} = 12 \, V; \, V_{GS} = 0 \, V; \, f = 1 \, MHz; \, T_J = 25 \, ^\circ C; \, Fig. \, 12; \, Fig. \, 13$ | 106 | 391 | 938 | pF
$t_{d(on)}$ | turn-on delay time | $V_{DS} = 12 \, V; \, R_G = 0.5 \, \Omega; \, V_{GS} = 4.5 \, V; \, R_{G(ext)} = 5 \, \Omega; \, T_J = 25 \, ^\circ C$ | - | 42 | - | ns
t_r | rise time | $I_S = 25 \, A; \, dI_S/dt = -100 \, A/\mu s; \, V_{GS} = 0 \, V; \, V_{DS} = 12 \, V; \, T_J = 25 \, ^\circ C; \, Fig. \, 16$ | - | 99 | - | ns
$t_{d(off)}$ | turn-off delay time | $V_{DS} = 12 \, V; \, V_{GS} = 0 \, V; \, f = 1 \, MHz; \, T_J = 25 \, ^\circ C$ | - | 27 | - | ns
t_f | fall time | $V_{DS} = 12 \, V; \, V_{GS} = 0 \, V; \, f = 1 \, MHz; \, T_J = 25 \, ^\circ C$ | - | 36 | - | ns
Q_{oss} | output charge | $V_{GS} = 0 \, V; \, V_{DS} = 12 \, V; \, f = 1 \, MHz; \, T_J = 25 \, ^\circ C$ | - | 38 | - | nC

Source-drain diode

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{SD} | source-drain voltage | $I_S = 25 \, A; \, V_{GS} = 0 \, V; \, T_J = 25 \, ^\circ C; \, Fig. \, 15$ | - | 0.78 | 1 | V
t_{rr} | reverse recovery time | $I_S = 25 \, A; \, dI_S/dt = -100 \, A/\mu s; \, V_{GS} = 0 \, V; \, V_{DS} = 12 \, V; \, T_J = 25 \, ^\circ C; \, Fig. \, 16$ | - | 33 | - | ns
Q_r | recovered charge | $V_{DS} = 12 \, V; \, T_J = 25 \, ^\circ C; \, Fig. \, 16$ | - | 25 | - | nC
t_a | reverse recovery rise time | - | 16.4 | - | ns
t_b | reverse recovery fall time | - | 16.4 | - | ns
S | softness factor | - | 1 | - | |

[1] includes capacitive recovery

Fig. 7. Output characteristics; drain current as a function of drain-source voltage; typical values
Fig. 8. Drain-source on-state resistance as a function of gate-source voltage; typical values
N-channel 25 V, 0.98 mOhm, ASFET for hotswap with enhanced SOA in LFPAK56

Fig. 9. Transfer characteristics; drain current as a function of gate-source voltage; typical values

Fig. 10. Drain-source on-state resistance as a function of drain current; typical values

Fig. 11. Normalized drain-source on-state resistance factor as a function of junction temperature

Fig. 12. Gate-source voltage as a function of gate charge; typical values
Nexperia

PSMNR89-25YLE

N-channel 25 V, 0.98 mOhm, A SFET for hotswap with enhanced SOA in LFPAK56

Fig. 13. Gate charge waveform definitions

Fig. 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Fig. 15. Source-drain (diode forward) current as a function of source-drain (diode forward) voltage; typical values

Fig. 16. Reverse recovery timing definition
11. Package outline

Plastic single-ended surface-mounted package (LFPAK56; Power-SO8); 4 leads

SOT669

Dimensions (mm are the original dimensions)

<table>
<thead>
<tr>
<th>Unit(1)</th>
<th>A</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>b</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>c</th>
<th>c2</th>
<th>D(1)</th>
<th>D2(1)</th>
<th>E(1)</th>
<th>E1(1)</th>
<th>e</th>
<th>H</th>
<th>L</th>
<th>L1</th>
<th>L2</th>
<th>W</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm max</td>
<td>1.20</td>
<td>0.15</td>
<td>1.10</td>
<td>0.50</td>
<td>4.41</td>
<td>2.2</td>
<td>0.9</td>
<td>0.25</td>
<td>0.30</td>
<td>4.10</td>
<td>4.20</td>
<td>5.0</td>
<td>3.3</td>
<td>1.27</td>
<td>6.2</td>
<td>0.85</td>
<td>1.3</td>
<td>1.3</td>
<td>0.25</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>mm nom</td>
<td>1.01</td>
<td>0.00</td>
<td>0.95</td>
<td>0.25</td>
<td>3.62</td>
<td>2.0</td>
<td>0.7</td>
<td>0.19</td>
<td>0.24</td>
<td>3.80</td>
<td>4.8</td>
<td>3.1</td>
<td>0.8</td>
<td>5.8</td>
<td>0.40</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

Fig. 17. Package outline LFPAK56; Power-SO8 (SOT669)
12. Soldering

Footprint information for reflow soldering

![Footprint Diagram]

- **SR opening = Cu** = 0.075
- **SP opening = Cu** = 0.050

SOT669

Fig. 18. Reflow soldering footprint for LFPAK56; Power-SO8 (SOT669)
Wave soldering footprint information for LFPAK56 package

Fig. 19. Wave soldering footprint for LFPAK56; Power-SO8 (SOT669)
13. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,2]</td>
<td>[2,3]</td>
<td></td>
</tr>
</tbody>
</table>

Objective [short] data sheet
- Development: This document contains data from the respective specification for product development.

Preliminary [short] data sheet
- Qualification: This document contains data from the preliminary specification.

Product [short] data sheet
- Production: This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term "short data sheet" is explained in Section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type name(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict between the short data sheet and the full data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

© Nexperia B.V. 2023. All rights reserved
Contents

1. General description ... 1
2. Features and benefits ... 1
3. Applications ... 1
4. Quick reference data .. 1
5. Pinning information ... 2
6. Ordering information ... 2
7. Marking ... 2
8. Limiting values ... 2
9. Thermal characteristics ... 4
10. Characteristics ... 5
11. Package outline ... 9
12. Soldering ... 10
13. Legal information .. 12

© Nexperia B.V. 2023. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 10 January 2023