1. General description

200 A, logic level gate drive N-channel enhancement mode MOSFET in 175 °C LFPAK56 package using advanced TrenchMOS Superjunction technology. This product has been designed and qualified for high performance power switching applications.

2. Features and benefits

- 200 A continuous $I_{D\text{\,(max)}}$ rating
- Avalanche rated, 100% tested at $I_{AS} = 180$ A
- Strong SOA (linear-mode) rating
- NextPower-S3 technology delivers 'superfast switching with soft body-diode recovery'
- Low Q_{RR}, Q_{G} and Q_{GD} for high system efficiency and low EMI designs
- Schottky-Plus body-diode with low V_{SD}, low Q_{RR}, soft recovery and low I_{DSS} leakage
- Optimised for 4.5 V gate drive utilising NextPower-S3 Superjunction technology
- High reliability LFPAK (Power SO8) package, with copper-clip and solder die attach, qualified to 175 °C
- Exposed leads can be wave soldered, visual solder joint inspection and high quality solder joints
- Low parasitic inductance and resistance

3. Applications

- High-performance synchronous rectification
- DC-to-DC converters
- High performance and high efficiency server power supply
- Brushless DC motor control
- Battery protection
- Load-switch and eFuse
- Inrush management, hotswap

4. Quick reference data

Table 1. Quick reference data	Conditions	Min	Typ	Max	Unit	
Symbol	Parameter					
V_{DS}	drain-source voltage	$25 \ ^\circ C \leq T_{j} \leq 175 \ ^\circ C$	-	-	40	V
I_{D}	drain current	$V_{GS} = 10$ V; $T_{mb} = 25$ °C; Fig. 2	-	-	200	A
P_{tot}	total power dissipation	$T_{mb} = 25$ °C; Fig. 1	-	-	194	W
T_{j}	junction temperature	-55	-	175	°C	

Static characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$R_{DS\text{\,on}}$	drain-source on-state resistance	$V_{GS} = 10$ V; $I_{D} = 25$ A; $T_{j} = 25$ °C; Fig. 10	-	1.5	1.8	mΩ
		$V_{GS} = 4.5$ V; $I_{D} = 25$ A; $T_{j} = 25$ °C; Fig. 10	-	1.9	2.3	mΩ
Nexperia

PSMN1R7-40YLD

N-channel 40 V, 1.8 mΩ, 200 A logic level MOSFET in LFPAK56 using NexPower-S3 Schottky-Plus technology

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{GD}</td>
<td>gate-drain charge</td>
<td>$I_D = 25 \text{ A}; V_{DS} = 20 \text{ V}; V_{GS} = 4.5 \text{ V}; \text{Fig. 12; Fig. 13}$</td>
<td>2.3</td>
<td>7.7</td>
<td>15</td>
<td>nC</td>
</tr>
<tr>
<td>$Q_{G(tot)}$</td>
<td>total gate charge</td>
<td></td>
<td>23</td>
<td>35</td>
<td>49</td>
<td>nC</td>
</tr>
</tbody>
</table>

[1] 200A Continuous current has been successfully demonstrated during application tests. Practically the current will be limited by PCB, thermal design and operating temperature.

5. Pinning information

Table 2. Pinning information

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>source</td>
<td>mb D</td>
<td>mb D</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>source</td>
<td>mb D</td>
<td>mb D</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>source</td>
<td>mb D</td>
<td>mb D</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>gate</td>
<td>mb D</td>
<td>mb D</td>
</tr>
<tr>
<td>mb</td>
<td>D</td>
<td>mounting base; connected to drain</td>
<td>mb D</td>
<td>mb D</td>
</tr>
</tbody>
</table>

6. Ordering information

Table 3. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSMN1R7-40YLD</td>
<td>LFPAK56; Power-SO8</td>
<td>plastic, single-ended surface-mounted package; 4 terminals</td>
<td>SOT669</td>
</tr>
</tbody>
</table>

7. Marking

Table 4. Marking codes

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSMN1R7-40YLD</td>
<td>1D7L40Y</td>
</tr>
</tbody>
</table>

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS}</td>
<td>drain-source voltage</td>
<td>$25 ^\circ C \leq T_j \leq 175 ^\circ C$</td>
<td>-</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>V_{DSM}</td>
<td>peak drain-source voltage</td>
<td>$t_p \leq 20 \text{ ns}; f \leq 500 \text{ kHz}; E_{DS(AL)} \leq 200 \text{ nJ};$ pulsed</td>
<td>-</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>V_{DGR}</td>
<td>drain-gate voltage</td>
<td>$25 ^\circ C \leq T_j \leq 175 ^\circ C; R_{GS} = 20 \text{ k}\Omega$</td>
<td>-</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>gate-source voltage</td>
<td></td>
<td>-20</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>$T_{mb} = 25 ^\circ C; \text{Fig. 1}$</td>
<td>-</td>
<td>194</td>
<td>W</td>
</tr>
<tr>
<td>I_D</td>
<td>drain current</td>
<td>$V_{GS} = 10 \text{ V}; T_{mb} = 25 ^\circ C; \text{Fig. 2}$</td>
<td>[1]</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{GS} = 10 \text{ V}; T_{mb} = 100 ^\circ C; \text{Fig. 2}$</td>
<td></td>
<td>-</td>
<td>167</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>peak drain current pulsed; $t_p \leq 10 \mu s; T_{mb} = 25 ^\circ C; \text{Fig. 3}$</td>
<td></td>
<td>-</td>
<td>944</td>
<td>A</td>
</tr>
</tbody>
</table>
N-channel 40 V, 1.8 mΩ, 200 A logic level MOSFET in LFPAK56 using NextPower-S3 Schottky-Plus technology

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td>-55</td>
<td>175</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_j</td>
<td>junction temperature</td>
<td>-55</td>
<td>175</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>$T_{sld(M)}$</td>
<td>peak soldering temperature</td>
<td>-</td>
<td>260</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Source-drain diode

- I_S: source current, $T_{mb} = 25$ °C
 - Min: -194 A
- I_{SM}: peak source current, pulsed; $t_p \leq 10$ µs; $T_{mb} = 25$ °C
 - Min: -944 A

Avalanche ruggedness

- $E_{DS(AlS)}$: non-repetitive drain-source avalanche energy
 - $I_D = 60.8$ A; $V_{sup} \leq 40$ V; $R_{GS} = 50$ Ω; $V_{DS} = 10$ V; $T_{j(init)} = 25$ °C; unclamped; $t_p = 202$ µs
 - Min: -319 mJ
 - $I_D = 25$ A; $V_{sup} \leq 40$ V; $R_{GS} = 50$ Ω; $V_{GS} = 10$ V; $T_{j(init)} = 25$ °C; unclamped; $t_p = 1.4$ ms
 - Min: -905 mJ
- I_{AS}: non-repetitive avalanche current
 - $V_{sup} = 40$ V; $V_{GS} = 10$ V; $T_{j(init)} = 25$ °C; $R_{GS} = 50$ Ω
 - Min: -180 A

[1] 200A continuous current has been successfully demonstrated during application tests. Practically the current will be limited by PCB, thermal design and operating temperature.

[2] Protected by 100% test

Fig. 1. Normalized total power dissipation as a function of mounting base temperature

\[
P_{der} = \frac{P_{tot}}{P_{tot(25^\circ C)}} \times 100\%
\]

Fig. 2. Continuous drain current as a function of mounting base temperature

$V_{GS} \geq 10$ V

(1) 200A continuous current has been successfully demonstrated during application tests. Practically the current will be limited by PCB, thermal design and operating temperature.
N-channel 40 V, 1.8 mΩ, 200 A logic level MOSFET in LFPAK56 using NextPower-S3 Schottky-Plus technology

T_{mb} = 25 °C; I_{DM} is a single pulse

Fig. 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

9. Thermal characteristics

Table 6. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{th(j-mb)}</td>
<td>thermal resistance from junction to mounting base</td>
<td>Fig. 4</td>
<td>-</td>
<td>0.69</td>
<td>0.77</td>
<td>K/W</td>
</tr>
<tr>
<td>R_{th(j-a)}</td>
<td>thermal resistance from junction to ambient</td>
<td>Fig. 5</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fig. 6</td>
<td>-</td>
<td>85</td>
<td>-</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Fig. 4. Transient thermal impedance from junction to mounting base as a function of pulse duration
10. Characteristics

Table 7. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Static characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{(BR)DSS}$</td>
<td>drain-source breakdown voltage</td>
<td>$I_D = 250 \mu A; V_{GS} = 0 V; T_j = 25 ^\circ C$</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_D = 250 \mu A; V_{GS} = 0 V; T_j = -55 ^\circ C$</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>$V_{GS(th)}$</td>
<td>gate-source threshold voltage</td>
<td>$I_D = 1 mA; V_{DS}=V_{GS}; T_j = 25 ^\circ C$</td>
<td>1.35</td>
<td>1.7</td>
<td>2.05</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta V_{GS(th)}/\Delta T$</td>
<td>gate-source threshold voltage variation with temperature</td>
<td>$25 ^\circ C \leq T_j \leq 150 ^\circ C$</td>
<td>-</td>
<td>-4.6</td>
<td>-</td>
<td>mV/K</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>drain leakage current</td>
<td>$V_{DS} = 32 V; V_{GS} = 0 V; T_j = 25 ^\circ C$</td>
<td>-</td>
<td>0.006</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DS} = 32 V; V_{GS} = 0 V; T_j = 125 ^\circ C$</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td>µA</td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>gate leakage current</td>
<td>$V_{GS} = 16 V; V_{DS} = 0 V; T_j = 25 ^\circ C$</td>
<td>-</td>
<td>2</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{GS} = -16 V; V_{DS} = 0 V; T_j = 25 ^\circ C$</td>
<td>-</td>
<td>2</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>drain-source on-state resistance</td>
<td>$V_{GS} = 10 V; I_D = 25 A; T_j = 25 ^\circ C$; $V_{GS} = 10 V; T_j = 175 ^\circ C$</td>
<td>-</td>
<td>1.5</td>
<td>1.8</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{GS} = 4.5 V; I_D = 25 A; T_j = 25 ^\circ C$; $V_{GS} = 4.5 V; T_j = 175 ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>R_G</td>
<td>gate resistance</td>
<td>$f = 1 MHz; T_j = 25 ^\circ C$</td>
<td>0.4</td>
<td>1</td>
<td>2.5</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Dynamic characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_G(tot)$</td>
<td>total gate charge</td>
<td>$I_D = 25 A; V_{DS} = 20 V; V_{GS} = 4.5 V$; $I_D = 25 A; V_{DS} = 20 V; V_{GS} = 10 V$</td>
<td>23</td>
<td>35</td>
<td>49</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_D = 0 A; V_{DS} = 0 V; V_{GS} = 10 V$</td>
<td>51</td>
<td>78</td>
<td>109</td>
<td>nC</td>
</tr>
</tbody>
</table>

Copper area 25.4 mm square; 70 µm thick on FR4 board

Fig. 5. PCB layout for thermal resistance from junction to ambient

70 µm thick copper on FR4 board

Fig. 6. PCB layout with minimum footprint for thermal resistance from junction to ambient
### Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Q_{GS} | gate-source charge | $I_D = 25 \, A; \; V_{DS} = 20 \, V; \; V_{GS} = 4.5 \, V$; | 7.8 | 13 | 20 | nC
$Q_{GS(th)}$ | pre-threshold gate-source charge | | 4.8 | 8.1 | 12 | nC
$Q_{GS(th-pl)}$ | post-threshold gate-source charge | | 2.9 | 4.9 | 7.4 | nC
Q_{GD} | gate-drain charge | | 2.3 | 7.7 | 15 | nC
$V_{GS(pl)}$ | gate-source plateau voltage | $I_D = 25 \, A; \; V_{DS} = 20 \, V$; | - | 2.7 | - | V
C_{iss} | input capacitance | $V_{DS} = 20 \, V; \; V_{GS} = 0 \, V; \; f = 1 \, MHz$; $T_j = 25 \, ^\circ C$; | 3699 | 5690 | 7966 | pF
C_{oss} | output capacitance | $T_j = 25 \, ^\circ C$; | 725 | 1115 | 1561 | pF
C_{rss} | reverse transfer capacitance | | 57 | 190 | 418 | pF
$t_{d(on)}$ | turn-on delay time | $V_{DS} = 20 \, V; \; R_L = 0.8 \, \Omega; \; V_{GS} = 4.5 \, V; \; R_{G(\text{ext})} = 5 \, \Omega$ | - | 30 | - | ns
t_r | rise time | | - | 30 | - | ns
$t_{d(off)}$ | turn-off delay time | | - | 36 | - | ns
t_f | fall time | | - | 20 | - | ns
Q_{oss} | output charge | $V_{GS} = 0 \, V; \; V_{DS} = 20 \, V; \; f = 1 \, MHz$; $T_j = 25 \, ^\circ C$; | - | 37 | - | nC

Source-drain diode

V_{SD} | source-drain voltage | $I_S = 25 \, A; \; V_{GS} = 0 \, V; \; T_j = 25 \, ^\circ C$; | - | 0.8 | 1 | V
t_{rr} | reverse recovery time | $I_S = 25 \, A; \; dI_S/dt = -100 \, A/\mu s; \; V_{GS} = 0 \, V; \; V_{DS} = 20 \, V$; | - | 33 | - | ns
Q_{r} | recovered charge | $V_{DS} = 20 \, V$; | [1] | 27 | - | nC
t_a | reverse recovery rise time | | - | 18 | - | ns
t_b | reverse recovery fall time | | - | 15 | - | ns

[1] includes capacitive recovery

Fig. 7. Output characteristics; drain current as a function of drain-source voltage; typical values

Fig. 8. Drain-source on-state resistance as a function of gate-source voltage; typical values

[All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2019. All rights reserved]
N-channel 40 V, 1.8 mΩ, 200 A logic level MOSFET in LFPAK56 using NextPower-S3 Schottky-Plus technology

Fig. 9. Transfer characteristics; drain current as a function of gate-source voltage; typical values

Fig. 10. Drain-source on-state resistance as a function of drain current; typical values

Fig. 11. Normalized drain-source on-state resistance factor as a function of junction temperature

Fig. 12. Gate-source voltage as a function of gate charge; typical values
N-channel 40 V, 1.8 mΩ, 200 A logic level MOSFET in LFPAK56 using NextPower-S3 Schottky-Plus technology

Fig. 13. Gate charge waveform definitions

\[
V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}
\]

Fig. 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

\[
V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}
\]

Fig. 15. Source-drain (diode forward) current as a function of source-drain (diode forward) voltage; typical values

\[
V_{GS} = 0 \text{ V}
\]

Fig. 16. Reverse recovery timing definition
11. Package outline

Fig. 17. Package outline LFPAK56; Power-SO8 (SOT669)
12. Soldering

Footprint information for reflow soldering

![Footprint Diagram](sot69_fr)

- **SR opening = Cu × 0.075**
- **SP opening = Cu × 0.050**

Dimensions in mm:
- 0.6 (3x)
- 0.25 (2x)
- 3.45
- 3.5
- 2.55
- 2
- 2.16
- 3.3
- 1.27
- 0.7 (4x)
- 3.81

Fig. 18. Reflow soldering footprint for LFPAK56; Power-SO8 (SOT69)
Fig. 19. Wave soldering footprint for LFPAK56; Power-SO8 (SOT669)
13. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective [short] data sheet</td>
<td>Development</td>
<td>This document contains data from the respective specification for product development.</td>
</tr>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term "short data sheet" is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description .. 1
2. Features and benefits .. 1
3. Applications .. 1
4. Quick reference data .. 1
5. Pinning information ... 2
6. Ordering information ... 2
7. Marking .. 2
8. Limiting values ... 2
9. Thermal characteristics ... 4
10. Characteristics .. 5
11. Package outline .. 9
12. Soldering .. 10
13. Legal information ... 12

© Nexperia B.V. 2019. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 27 August 2019