1. General description

Planar Schottky barrier rectifier with an integrated guard ring for stress protection, encapsulated in a SOD123W small and flat lead Surface-Mounted Device (SMD) plastic package.

2. Features and benefits

- Average forward current: $I_{F(AV)} \leq 1 \text{ A}$
- Reverse voltage: $V_R \leq 60 \text{ V}$
- Low forward voltage
- High power capability due to clip-bond technology
- Small and flat lead SMD plastic package

3. Applications

- Low voltage rectification
- High efficiency DC-to-DC conversion
- Switch Mode Power Supply (SMPS)
- Reverse polarity protection
- Low power consumption applications

4. Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{F(AV)}$</td>
<td>average forward current</td>
<td>$\delta = 0.5; f = 20 \text{ kHz}; \text{square wave}; T_{amb} \leq 110 \degree \text{C}$</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\delta = 0.5; f = 20 \text{ kHz}; \text{square wave}; T_{sp} \leq 140 \degree \text{C}$</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>V_R</td>
<td>reverse voltage</td>
<td>$T_j = 25 \degree \text{C}$</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>$I_F = 1 \text{ A}; T_j = 25 \degree \text{C}$</td>
<td>-</td>
<td>460</td>
<td>530</td>
<td>mV</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>$V_R = 60 \text{ V}; T_j = 25 \degree \text{C}$</td>
<td>-</td>
<td>30</td>
<td>60</td>
<td>μA</td>
</tr>
</tbody>
</table>

[1] Device mounted on a ceramic PCB, Al_2O_3, standard footprint.

5. Pinning information

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K</td>
<td>cathode[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>anode</td>
<td>CFP3 (SOD123W)</td>
<td>sym001f</td>
</tr>
</tbody>
</table>

[1] The marking bar indicates the cathode.
6. Ordering information

Table 3. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG6010ER</td>
<td>CFP3</td>
<td>plastic, surface mounted package; 2 terminals; 2.6 mm x 1.7 mm x 1 mm body</td>
<td>SOD123W</td>
</tr>
</tbody>
</table>

7. Marking

Table 4. Marking codes

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG6010ER</td>
<td>BB</td>
</tr>
</tbody>
</table>

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_R</td>
<td>reverse voltage</td>
<td>$T_j = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>$I_{F(\text{AV})}$</td>
<td>average forward current</td>
<td>$\delta = 0.5; f = 20 , \text{kHz}; \text{square wave}; T_{\text{amb}} \leq 110 , ^\circ\text{C}$</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\delta = 0.5; f = 20 , \text{kHz}; \text{square wave}; T_{\text{sp}} \leq 140 , ^\circ\text{C}$</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>non-repetitive peak forward current</td>
<td>$t_p = 8 , \text{ms}; \text{half sine wave}; T_{j(\text{init})} = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>$T_{\text{amb}} \leq 25 , ^\circ\text{C}$</td>
<td>[2]</td>
<td>0.57</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[3]</td>
<td>0.95</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[1]</td>
<td>1.8</td>
<td>W</td>
</tr>
<tr>
<td>T_j</td>
<td>junction temperature</td>
<td></td>
<td>-</td>
<td>150</td>
<td>^\circ\text{C}</td>
</tr>
<tr>
<td>T_{amb}</td>
<td>ambient temperature</td>
<td></td>
<td>-55</td>
<td>150</td>
<td>^\circ\text{C}</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td></td>
<td>-65</td>
<td>150</td>
<td>^\circ\text{C}</td>
</tr>
</tbody>
</table>

9. Thermal characteristics

Table 6. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{th(j-a)}}$</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air</td>
<td>[1]</td>
<td>[2]</td>
<td>-</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td>K/W</td>
</tr>
<tr>
<td>$R_{\text{th(j-a)}}$</td>
<td>thermal resistance from junction to ambient</td>
<td>in air</td>
<td>[1]</td>
<td>[3]</td>
<td>-</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>K/W</td>
</tr>
</tbody>
</table>

[1] For Schottky barrier diodes thermal runaway has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses.

FR4 PCB, standard footprint

Fig. 1. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

FR4 PCB, mounting pad for cathode 1 cm2

Fig. 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
Fig. 3. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

10. Characteristics

Table 7. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>I_F = 0.1 A; T_j = 25 °C</td>
<td>-</td>
<td>320</td>
<td>370</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_F = 0.7 A; T_j = 25 °C</td>
<td>-</td>
<td>430</td>
<td>490</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_F = 1 A; T_j = 25 °C</td>
<td>-</td>
<td>460</td>
<td>530</td>
<td>mV</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>V_R = 5 V; T_j = 25 °C</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_R = 10 V; T_j = 25 °C</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_R = 60 V; T_j = 25 °C</td>
<td>-</td>
<td>30</td>
<td>60</td>
<td>µA</td>
</tr>
<tr>
<td>C_d</td>
<td>diode capacitance</td>
<td>V_R = 1 V; f = 1 MHz; T_j = 25 °C</td>
<td>-</td>
<td>120</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_R = 10 V; f = 1 MHz; T_j = 25 °C</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>
60 V, 1 A low VF Schottky barrier rectifier

Fig. 4. Forward current as a function of forward voltage; typical values

(1) $T_J = 150 \degree C$
(2) $T_J = 125 \degree C$
(3) $T_J = 85 \degree C$
(4) $T_J = 25 \degree C$
(5) $T_J = -40 \degree C$

Fig. 5. Reverse current as a function of reverse voltage; typical values

(1) $T_J = 125 \degree C$
(2) $T_J = 85 \degree C$
(3) $T_J = 25 \degree C$
(4) $T_J = -40 \degree C$

Fig. 6. Diode capacitance as a function of reverse voltage; typical values

$f = 1 \text{ MHz}; T_{\text{amb}} = 25 \degree C$

Fig. 7. Average forward power dissipation as a function of average forward current; typical values

$T_J = 150 \degree C$
(1) $\delta = 0.1$
(2) $\delta = 0.2$
(3) $\delta = 0.5$
(4) $\delta = 1$
60 V, 1 A low VF Schottky barrier rectifier

Fig. 8. Average reverse power dissipation as a function of reverse voltage; typical values

\[P_{R(AV)}(W) \]

\[V_R(V) \]

- \(T_J = 125 \, ^\circ C \)
 - (1) \(\delta = 1 \)
 - (2) \(\delta = 0.9 \)
 - (3) \(\delta = 0.8 \)
 - (4) \(\delta = 0.5 \)

FR4 PCB, standard footprint

- \(T_J = 150 \, ^\circ C \)
 - (1) \(\delta = 1; \) DC
 - (2) \(\delta = 0.5; \) f = 20 kHz
 - (3) \(\delta = 0.2; \) f = 20 kHz
 - (4) \(\delta = 0.1; \) f = 20 kHz

Fig. 9. Average forward current as a function of ambient temperature; typical values

- FR4 PCB, mounting pad for cathode 1 cm\(^2\)
 - \(T_J = 150 \, ^\circ C \)
 - (1) \(\delta = 1; \) DC
 - (2) \(\delta = 0.5; \) f = 20 kHz
 - (3) \(\delta = 0.2; \) f = 20 kHz
 - (4) \(\delta = 0.1; \) f = 20 kHz

- Ceramic PCB, \(Al_2O_3, \) standard footprint
 - \(T_J = 150 \, ^\circ C \)
 - (1) \(\delta = 1; \) DC
 - (2) \(\delta = 0.5; \) f = 20 kHz
 - (3) \(\delta = 0.2; \) f = 20 kHz
 - (4) \(\delta = 0.1; \) f = 20 kHz

Fig. 10. Average forward current as a function of ambient temperature; typical values
11. Test information

The current ratings for the typical waveforms are calculated according to the equations:

- $I_{F(AV)} = I_M \times \delta$ with I_M defined as peak current
- $I_{RMS} = I_{F(AV)}$ at DC
- $I_{RMS} = I_M \times \sqrt{\delta}$ with I_{RMS} defined as RMS current

Fig. 12. Average forward current as a function of solder point temperature; typical values

Fig. 13. Duty cycle definition

$T_j = 150 ^\circ \text{C}$

(1) $\delta = 1$; DC
(2) $\delta = 0.5$; $f = 20 \text{ kHz}$
(3) $\delta = 0.2$; $f = 20 \text{ kHz}$
(4) $\delta = 0.1$; $f = 20 \text{ kHz}$
12. Package outline

Fig. 14. Package outline CFP3 (SOD123W)
13. Soldering

Footprint information for reflow soldering of CFP3 package

![Footprint Diagram](sod123w_fr)

- Occupied area
- Solder land
- Solder resist
- Sold paste

Dimensions in mm:
- 2.1
- 1.8
- 2.9
- 2.8
- 4.4
- 1.1
- 1.2
- 1.4
- 1.6
- 2.1
- 1.2
- 1.4
- 2.8
- 3.9
- 2.8

Recommended stencil thickness: 0.1 mm

Fig. 15. Reflow soldering footprint for CFP3 (SOD123W)
Fig. 16. Wave soldering footprint for CFP3 (SOD123W)
14. Revision history

Table 8. Revision history

<table>
<thead>
<tr>
<th>Data sheet ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG6010ER v.4</td>
<td>20230101</td>
<td>Product data sheet</td>
<td>-</td>
<td>PMEG6010ER v.3</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Limiting values:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for I_{FSM} changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>from square wave to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>half-sine wave.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMEG6010ER v.3</td>
<td>20221001</td>
<td>Product data sheet</td>
<td>-</td>
<td>PMEG6010ER v.2</td>
</tr>
<tr>
<td>PMEG6010ER v.2</td>
<td>20190228</td>
<td>Product data sheet</td>
<td>-</td>
<td>PMEG6010ER v.1</td>
</tr>
<tr>
<td>PMEG6010ER_1</td>
<td>20100309</td>
<td>Product data sheet</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

All information provided in this document is subject to legal disclaimers.
© Nexperia B.V. 2023. All rights reserved.
15. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective [short] data sheet</td>
<td>Development</td>
<td>This document contains data from the respective specification for product development.</td>
</tr>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term "short data sheet" is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type (s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description..1
2. Features and benefits.. 1
3. Applications...1
4. Quick reference data..1
5. Pinning information...1
6. Ordering information..2
7. Marking..2
8. Limiting values..2
9. Thermal characteristics..3
10. Characteristics..4
11. Test information..7
12. Package outline..8
13. Soldering...9
14. Revision history...11
15. Legal information...12

© Nexperia B.V. 2023. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 1 January 2023