1. General description

2. Features and benefits

- Average forward current $I_{(AV)} \leq 0.5$ A
- Reverse voltage $V_R \leq 20$ V
- Low forward voltage typ. $V_F = 245$ mV
- Low reverse current typ. $I_R = 5$ µA
- Package height typ. 0.3 mm

3. Applications

- Low voltage rectification
- High efficiency DC-to-DC conversion
- Switch mode power supply
- Ultra high speed switching
- LED backlight for mobile application

4. Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{(AV)}$</td>
<td>average forward current</td>
<td>$\delta = 0.5; f = 20$ kHz; $T_{amb} = 115$ °C; square wave</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>V_R</td>
<td>reverse voltage</td>
<td>$T_j = 25$ °C</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>$I_F = 10$ mA; $t_p \leq 300$ µs; $\delta \leq 0.02$; $T_j = 25$ °C</td>
<td>-</td>
<td>245</td>
<td>310</td>
<td>mV</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>$V_R = 10$ V; $T_j = 25$ °C; pulsed</td>
<td>5</td>
<td>25</td>
<td>-</td>
<td>µA</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>reverse recovery time</td>
<td>$I_F = 500$ mA; $I_R = 500$ mA; $I_{R(meas)} = 100$ mA; $T_j = 25$ °C</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

[1] Device mounted on a ceramic Printed-Circuit Board (PCB), Al_2O_3, standard footprint.
5. Pinning information

Table 2. Pinning information

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K</td>
<td>cathode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>anode</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] The marking bar indicates the cathode.

6. Ordering information

Table 3. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG2005AESF</td>
<td>DSN0603-2</td>
<td>DSN0603-2</td>
<td>Leadless ultra small package; 2 terminals; body 0.6 x 0.3 x 0.3 mm</td>
<td>SOD962-2</td>
</tr>
</tbody>
</table>

7. Marking

Table 4. Marking codes

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG2005AESF</td>
<td>6</td>
</tr>
</tbody>
</table>
8. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_R</td>
<td>reverse voltage</td>
<td>$T_j = 25 , ^\circ C$</td>
<td>-</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>I_F</td>
<td>forward current</td>
<td>$T_{sp} \leq 140 , ^\circ C; \delta = 1$</td>
<td>-</td>
<td>0.71</td>
<td>A</td>
</tr>
<tr>
<td>$I_{F(AV)}$</td>
<td>average forward current</td>
<td>$\delta = 0.5; f = 20 , kHz; T_{amb} = 115 , ^\circ C$; square wave</td>
<td>[1]</td>
<td>-</td>
<td>0.5 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\delta = 0.5; f = 20 , kHz; T_{sp} = 145 , ^\circ C$; square wave</td>
<td></td>
<td>-</td>
<td>0.5 A</td>
</tr>
<tr>
<td>I_{FRM}</td>
<td>repetitive peak forward current</td>
<td>$t_p \leq 1 , ms; \delta \leq 0.25$</td>
<td>-</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>non-repetitive peak forward current</td>
<td>$t_p = 8 , ms; T_{j(init)} = 25 , ^\circ C$; square wave</td>
<td>-</td>
<td>4.5</td>
<td>A</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>$T_{amb} \leq 25 , ^\circ C$</td>
<td>[2]</td>
<td>-</td>
<td>405 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[3]</td>
<td>-</td>
<td>660 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[1]</td>
<td>-</td>
<td>1200 mW</td>
</tr>
<tr>
<td>T_j</td>
<td>junction temperature</td>
<td>-</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{amb}</td>
<td>ambient temperature</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for anode and cathode 1 cm2 each.

9. Thermal characteristics

Table 6. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th(j-a)}$</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air</td>
<td>[1][2]</td>
<td>-</td>
<td>-</td>
<td>310 K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[1][3]</td>
<td>-</td>
<td>-</td>
<td>190 K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[1][4]</td>
<td>-</td>
<td>-</td>
<td>105 K/W</td>
</tr>
<tr>
<td>$R_{th(j-sp)}$</td>
<td>thermal resistance from junction to solder point</td>
<td>[5]</td>
<td>-</td>
<td>-</td>
<td>40 K/W</td>
<td></td>
</tr>
</tbody>
</table>

[1] For Schottky barrier diodes thermal runaway has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses.
[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for anode and cathode 1 cm2 each.
FR4 PCB, standard footprint

Fig. 1. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

FR4 PCB, mounting pad for anode and cathode 1 cm² each

Fig. 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
Fig. 3. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
10. Characteristics

Table 7. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(BR)R})</td>
<td>reverse breakdown voltage</td>
<td>(I_R = 100 , \mu A; \ t_p = 300 , \mu s; \ \delta = 0.02; \ T_j = 25 , ^\circ C)</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_F)</td>
<td>forward voltage</td>
<td>(I_F = 0.1 , mA; \ t_p \leq 300 , \mu s; \ \delta \leq 0.02; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>120</td>
<td>180</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 1 , mA; \ t_p \leq 300 , \mu s; \ \delta \leq 0.02; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>180</td>
<td>250</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 10 , mA; \ t_p \leq 300 , \mu s; \ \delta \leq 0.02; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>245</td>
<td>310</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 100 , mA; \ t_p \leq 300 , \mu s; \ \delta \leq 0.02; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>330</td>
<td>380</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 200 , mA; \ t_p \leq 300 , \mu s; \ \delta \leq 0.02; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>375</td>
<td>420</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 500 , mA; \ t_p \leq 300 , \mu s; \ \delta \leq 0.02; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>475</td>
<td>550</td>
<td>mV</td>
</tr>
<tr>
<td>(I_R)</td>
<td>reverse current</td>
<td>(V_R = 6 , V; \ T_j = 25 , ^\circ C; \ pulsed)</td>
<td>-</td>
<td>3.2</td>
<td>-</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_R = 10 , V; \ T_j = 25 , ^\circ C; \ pulsed)</td>
<td>-</td>
<td>5</td>
<td>25</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_R = 20 , V; \ T_j = 25 , ^\circ C; \ pulsed)</td>
<td>-</td>
<td>10</td>
<td>45</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(C_d)</td>
<td>diode capacitance</td>
<td>(V_R = 1 , V; \ f = 1 , MHz; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_R = 10 , V; \ f = 1 , MHz; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>reverse recovery time</td>
<td>(I_F = 500 , mA; \ I_R = 500 , mA; \ I_{R(meas)} = 100 , mA; \ T_j = 25 , ^\circ C)</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>
Fig. 4. Forward current as a function of forward voltage; typical values

Pulsed condition:
1. $T_j = 150 \, ^\circ\text{C}$
2. $T_j = 125 \, ^\circ\text{C}$
3. $T_j = 85 \, ^\circ\text{C}$
4. $T_j = 25 \, ^\circ\text{C}$
5. $T_j = -40 \, ^\circ\text{C}$

Fig. 5. Reverse current as a function of reverse voltage; typical values

Pulsed condition:
1. $T_j = 150 \, ^\circ\text{C}$
2. $T_j = 125 \, ^\circ\text{C}$
3. $T_j = 85 \, ^\circ\text{C}$
4. $T_j = 25 \, ^\circ\text{C}$
5. $T_j = -40 \, ^\circ\text{C}$

Fig. 6. Diode capacitance as a function of reverse voltage; typical values

$f = 1 \, \text{MHz}; T_{\text{amb}} = 25 \, ^\circ\text{C}$

Fig. 7. Average forward power dissipation as a function of average forward current; typical values

$T_j = 150 \, ^\circ\text{C}$
1. $\delta = 0.1$
2. $\delta = 0.2$
3. $\delta = 0.5$
4. $\delta = 1$
Product data sheet

Nexperia

PMEG2005AESF

20 V, 0.5 A low VF MEGA Schottky barrier rectifier

Fig. 8. Average reverse power dissipation as a function of reverse voltage; typical values

<table>
<thead>
<tr>
<th>V<sub>R</sub> (V)</th>
<th>P<sub>R(AV)</sub> (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

T_j = 125 °C

(1) δ = 1
(2) δ = 0.9
(3) δ = 0.8
(4) δ = 0.5

Fig. 9. Average forward current as a function of ambient temperature; typical values

<table>
<thead>
<tr>
<th>T<sub>amb</sub> (°C)</th>
<th>I<sub>F(AV)</sub> (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>25</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
</tr>
<tr>
<td>100</td>
<td>0.2</td>
</tr>
<tr>
<td>175</td>
<td>0.0</td>
</tr>
</tbody>
</table>

FR4 PCB, standard footprint

T_j = 150 °C

(1) δ = 1; DC
(2) δ = 0.5; f = 20 kHz
(3) δ = 0.2; f = 20 kHz
(4) δ = 0.1; f = 20 kHz

FR4 PCB, mounting pad for anode and cathode

1 cm² each

T_j = 150 °C

(1) δ = 1; DC
(2) δ = 0.5; f = 20 kHz
(3) δ = 0.2; f = 20 kHz
(4) δ = 0.1; f = 20 kHz

Fig. 10. Average forward current as a function of ambient temperature; typical values

FR4 PCB, Al₂O₃, standard footprint

T_j = 150 °C

(1) δ = 1; DC
(2) δ = 0.5; f = 20 kHz
(3) δ = 0.2; f = 20 kHz
(4) δ = 0.1; f = 20 kHz

Fig. 11. Average forward current as a function of ambient temperature; typical values

Ceramic PCB, Al₂O₃, standard footprint

T_j = 150 °C

(1) δ = 1; DC
(2) δ = 0.5; f = 20 kHz
(3) δ = 0.2; f = 20 kHz
(4) δ = 0.1; f = 20 kHz

11. Test information

Fig. 12. Average forward current as a function of solder point temperature; typical values

\[T_j = 150 \, ^\circ C \]

(1) \(\delta = 1; \) DC
(2) \(\delta = 0.5; f = 20 \, \text{kHz} \)
(3) \(\delta = 0.2; f = 20 \, \text{kHz} \)
(4) \(\delta = 0.1; f = 20 \, \text{kHz} \)

Fig. 13. Reverse recovery definition

Fig. 14. Duty cycle definition
The current ratings for the typical waveforms are calculated according to the equations:

\[I_{F(AV)} = I_M \times \delta \]

with \(I_M \) defined as peak current, \(I_{RMS} = I_{F(AV)} \) at DC, and

\[I_{RMS} = I_M \times \sqrt{\delta} \]

with \(I_{RMS} \) defined as RMS current.

12. Package outline

![Package outline diagram]

Fig. 15. Package outline DSN0603-2 (SOD962-2)

13. Soldering

![Reflow soldering footprint diagram]

Fig. 16. Reflow soldering footprint for DSN0603-2 (SOD962-2)
14. Revision history

<table>
<thead>
<tr>
<th>Data sheet ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG2005AESF v.2</td>
<td>20150213</td>
<td>Product data sheet</td>
<td>-</td>
<td>PMEG2005AESF v.1</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Product status changed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMEG2005AESF v.1</td>
<td>20141219</td>
<td>Preliminary data sheet</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
20 V, 0.5 A low VF MEGA Schottky barrier rectifier

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the
grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia’s standard warranty and Nexperia’s product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
16. Contents

1 General description .. 1
2 Features and benefits .. 1
3 Applications .. 1
4 Quick reference data .. 1
5 Pinning information .. 2
6 Ordering information .. 2
7 Marking .. 2
8 Limiting values ... 3
9 Thermal characteristics .. 3
10 Characteristics .. 6
11 Test information .. 9
12 Package outline ... 10
13 Soldering .. 10
14 Revision history ... 11
15 Legal information ... 12
 15.1 Data sheet status ... 12
 15.2 Definitions .. 12
 15.3 Disclaimers .. 12
 15.4 Trademarks .. 13

© Nexperia B.V. 2017. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 13 February 2015