1. General description

Trench Maximum Efficiency General Application (MEGA) Schottky barrier rectifier encapsulated in a CFP3 (SOD123W) small and flat lead Surface-Mounted Device (SMD) plastic package.

2. Features and benefits

- Low forward voltage
- Low Q_r and low I_{RM}
- Low leakage current
- High power capability due to clip-bonding technology
- Small and flat lead SMD power plastic package

3. Applications

- High efficiency DC-to-DC conversion
- LED lighting
- Switch mode power supply
- Freewheeling applications
- Reverse polarity protection
- OR-ing

4. Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{F(AV)}$</td>
<td>average forward current</td>
<td>$\delta = 0.5; f = 20$ kHz; square wave; $T_{sp} \leq 156$ °C</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>V_R</td>
<td>reverse voltage</td>
<td>$T_j = 25$ °C</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>$I_F = 2$ A; pulsed; $T_j = 25$ °C</td>
<td>[1]</td>
<td>705</td>
<td>800</td>
<td>mV</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>$V_R = 100$ V; pulsed; $T_j = 25$ °C</td>
<td>[1]</td>
<td>0.15</td>
<td>1.25</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 100$ V; pulsed; $T_j = 125$ °C</td>
<td>[1]</td>
<td>0.28</td>
<td>1.2</td>
<td>mA</td>
</tr>
</tbody>
</table>

[1] Very short pulse, in order to maintain a stable junction temperature.
5. Pinning information

Table 2. Pinning information

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K</td>
<td>cathode[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>anode</td>
<td></td>
<td>K A</td>
</tr>
</tbody>
</table>

[1] The marking bar indicates the cathode.

6. Ordering information

Table 3. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG100T20ELR</td>
<td>CFP3</td>
<td>plastic, surface mounted package; 2 terminals; 2.6 mm x 1.7 mm x 1 mm body</td>
<td>SOD123W</td>
<td></td>
</tr>
</tbody>
</table>

7. Marking

Table 4. Marking codes

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG100T20ELR</td>
<td>LB</td>
</tr>
</tbody>
</table>

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_R)</td>
<td>reverse voltage</td>
<td>(T_j = 25 , ^\circ \text{C})</td>
<td>-</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>(I_F)</td>
<td>forward current</td>
<td>(\delta = 1; \ T_{sp} \leq 150 , ^\circ \text{C})</td>
<td>-</td>
<td>2.8</td>
<td>A</td>
</tr>
<tr>
<td>(I_{F(AV)})</td>
<td>average forward current</td>
<td>(\delta = 0.5; \ f = 20 , \text{kHz}; \square \text{wave}; \ T_{sp} \leq 156 , ^\circ \text{C})</td>
<td>-</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>(I_{FSM})</td>
<td>non-repetitive peak forward current</td>
<td>(t_p = 8.3 , \text{ms}; \half \text{wave}; \ T_{j(init)} = 25 , ^\circ \text{C})</td>
<td>-</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>(P_{tot})</td>
<td>total power dissipation</td>
<td>(T_{amb} \leq 25 , ^\circ \text{C})</td>
<td>[1]</td>
<td>0.68</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[2]</td>
<td>1.15</td>
<td>W</td>
</tr>
<tr>
<td>(T_j)</td>
<td>junction temperature</td>
<td></td>
<td>-</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{amb})</td>
<td>ambient temperature</td>
<td></td>
<td>-55</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>storage temperature</td>
<td></td>
<td>-65</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

9. Thermal characteristics

Table 6. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th(j-a)}$</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air</td>
<td>[1]</td>
<td>[2]</td>
<td>-</td>
<td>220 K/W</td>
</tr>
<tr>
<td>$R_{th(j-sp)}$</td>
<td>thermal resistance from junction to solder point</td>
<td>[4]</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>K/W</td>
</tr>
</tbody>
</table>

[1] For Schottky barrier diodes thermal runaway has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses.

![Graph 1](aaa-033002)

FR4 PCB, single-sided copper, tin-plated and standard footprint

Fig. 1. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

![Graph 2](aaa-033003)

FR4 PCB, single-sided copper, tin-plated and mounting pad for cathode 1 cm2

Fig. 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
10. Characteristics

Table 7. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{(BR)R}$</td>
<td>reverse breakdown voltage</td>
<td>$I_R = 1 \text{ mA}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>100</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>$I_F = 0.1 \text{ A}; \text{ pulsed}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>420</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 0.5 \text{ A}; \text{ pulsed}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>515</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 1 \text{ A}; \text{ pulsed}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>590</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 2 \text{ A}; \text{ pulsed}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>705</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 2 \text{ A}; \text{ pulsed}; T_j = -40 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>705</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 2 \text{ A}; \text{ pulsed}; T_j = 125 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>590</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 2 \text{ A}; \text{ pulsed}; T_j = 150 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>550</td>
<td>620</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>$V_R = 60 \text{ V}; \text{ pulsed}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>0.06</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 100 \text{ V}; \text{ pulsed}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>0.15</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 100 \text{ V}; \text{ pulsed}; T_j = 125 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>0.28</td>
<td>1.2</td>
</tr>
<tr>
<td>C_d</td>
<td>diode capacitance</td>
<td>$V_R = 100 \text{ V}; \text{ pulsed}; T_j = 150 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>1.1</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 1 \text{ V}; f = 1 \text{ MHz}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 10 \text{ V}; f = 1 \text{ MHz}; T_j = 25 ^\circ \text{C}$</td>
<td>[1]</td>
<td>-</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>reverse recovery time step recovery</td>
<td>$I_F = 0.5 \text{ A}; I_R = 0.5 \text{ A}; I_{R(\text{meas})} = 0.1 \text{ A}; T_j = 25 ^\circ \text{C}$</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>reverse recovery time ramp recovery</td>
<td>$dI_F/dt = 200 \text{ A/µs}; I_F = 6 \text{ A}; V_R = 26 \text{ V}; T_j = 25 ^\circ \text{C}$</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>I_{FRM}</td>
<td>peak reverse recovery current</td>
<td>$dI_F/dt = 200 \text{ A/µs}; I_F = 6 \text{ A}; V_R = 26 \text{ V}; T_j = 25 ^\circ \text{C}$</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>reverse recovery charge</td>
<td></td>
<td>-</td>
<td>8.5</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>V_{FRM}</td>
<td>peak forward recovery voltage</td>
<td>$I_F = 0.5 \text{ A}; dI_F/dt = 20 \text{ A/µs}; T_j = 25 ^\circ \text{C}$</td>
<td>-</td>
<td>520</td>
<td>-</td>
<td>mV</td>
</tr>
</tbody>
</table>

[1] Very short pulse, in order to maintain a stable junction temperature.
100 V, 2 A low leakage current Trench MEGA Schottky barrier rectifier

Fig. 3. Forward current as a function of forward voltage; typical values

Pulsed condition
(1) $T_J = 175 \degree C$
(2) $T_J = 150 \degree C$
(3) $T_J = 125 \degree C$
(4) $T_J = 100 \degree C$
(5) $T_J = 85 \degree C$
(6) $T_J = 25 \degree C$
(7) $T_J = -40 \degree C$

Fig. 4. Reverse current as a function of reverse voltage; typical values

Pulsed condition
(1) $T_J = 175 \degree C$
(2) $T_J = 150 \degree C$
(3) $T_J = 125 \degree C$
(4) $T_J = 100 \degree C$
(5) $T_J = 85 \degree C$
(6) $T_J = 25 \degree C$
(7) $T_J = -40 \degree C$

Fig. 5. Diode capacitance as a function of reverse voltage; typical values

$f = 1 \text{ MHz}; T_{amb} = 25 \degree C$

Fig. 6. Average forward power dissipation as a function of average forward current; typical values

$T_J = 100 \degree C$
(1) $\delta = 0.1$
(2) $\delta = 0.2$
(3) $\delta = 0.5$
(4) $\delta = 0.8$
(5) $\delta = 1; \text{ DC}$
100 V, 2 A low leakage current Trench MEGA Schottky barrier rectifier

Fig. 7. Average reverse power dissipation as a function of reverse voltage; typical values

- $T_j = 100 °C$
- (1) $\delta = 1$; DC
- (2) $\delta = 0.9$
- (3) $\delta = 0.8$
- (4) $\delta = 0.5$
- (5) $\delta = 0.2$

Fig. 8. Average forward current as a function of ambient temperature; typical values

- FR4 PCB, standard footprint
- $T_j = 175 °C$
- (1) $\delta = 1$; DC
- (2) $\delta = 0.5$; $f = 20$ kHz
- (3) $\delta = 0.2$; $f = 20$ kHz
- (4) $\delta = 0.1$; $f = 20$ kHz

Fig. 9. Average forward current as a function of ambient temperature; typical values

- FR4 PCB, mounting pad for cathode 1 cm2
- $T_j = 175 °C$
- (1) $\delta = 1$; DC
- (2) $\delta = 0.5$; $f = 20$ kHz
- (3) $\delta = 0.2$; $f = 20$ kHz
- (4) $\delta = 0.1$; $f = 20$ kHz

Fig. 10. Average forward current as a function of solder point temperature; typical values

- $T_j = 175 °C$
- (1) $\delta = 1$; DC
- (2) $\delta = 0.5$; $f = 20$ kHz
- (3) $\delta = 0.2$; $f = 20$ kHz
- (4) $\delta = 0.1$; $f = 20$ kHz
100 V, 2 A low leakage current Trench MEGA Schottky barrier rectifier

FR4 PCB, standard footprint
$R_{th} = 220 \text{ K/W}$

Fig. 11. Derated maximum reverse voltage as a function of junction temperature; typical values

FR4 PCB, mounting pad for cathode 1 cm2
$R_{th} = 130 \text{ K/W}$

Fig. 12. Derated maximum reverse voltage as a function of junction temperature; typical values

Soldering point of cathode tab
$R_{th} = 18 \text{ K/W}$

Fig. 13. Derated maximum reverse voltage as a function of junction temperature; typical values
11. Test information

Fig. 14. Reverse recovery definition; step recovery

Fig. 15. Reverse recovery definition; ramp recovery

Fig. 16. Forward recovery definition
The current ratings for the typical waveforms are calculated according to the equations: $I_{F(AC)} = I_M \times \delta$ with I_M defined as peak current, $I_{RMS} = I_{F(AC)}$ at DC, and $I_{RMS} = I_M \times \sqrt{\delta}$ with I_{RMS} defined as RMS current.

12. Package outline

![Package outline CFP3 (SOD123W)](image)
13. Soldering

Footprint information for reflow soldering of CFP3 package

![Footprint diagram](sod123w_fr)

Recommended stencil thickness: 0.1 mm

Fig. 19. Reflow soldering footprint for CFP3 (SOD123W)
Fig. 20. Wave soldering footprint for CFP3 (SOD123W)
14. Revision history

<table>
<thead>
<tr>
<th>Data sheet ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEG100T20ELR v.2</td>
<td>20210712</td>
<td>Product data sheet</td>
<td>-</td>
<td>PMEG100T20ELR v.1</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Figure 6 adapted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMEG100T20ELR v.1</td>
<td>20210519</td>
<td>Product data sheet</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Nexperia

15. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1][2]</td>
<td>[3]</td>
<td>[1] Please consult the most recently issued document before initiating or completing a design. [2] The term "short data sheet" is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.</td>
</tr>
</tbody>
</table>

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type (i.e. all devices where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s).

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any and all failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia’s standard warranty and Nexperia’s product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Objective [short] data sheet

Development

This document contains data from the respective specification for product development.

PMEG100T20ELR

100 V, 2 A low leakage current Trench MEGA Schottky barrier rectifier

PMEG100T20ELR

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2021. All rights reserved

Product data sheet 12 July 2021 13 / 14

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any and all failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia’s standard warranty and Nexperia’s product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1][2]</td>
<td>[3]</td>
<td>[1] Please consult the most recently issued document before initiating or completing a design. [2] The term "short data sheet" is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.</td>
</tr>
</tbody>
</table>

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type (i.e. all devices where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s).

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any and all failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia’s standard warranty and Nexperia’s product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description .. 1
2. Features and benefits .. 1
3. Applications .. 1
4. Quick reference data .. 1
5. Pinning information ... 2
6. Ordering information ... 2
7. Marking ... 2
8. Limiting values .. 2
9. Thermal characteristics .. 3
10. Characteristics ... 4
11. Test information .. 8
12. Package outline ... 9
13. Soldering .. 10
14. Revision history ... 12
15. Legal information .. 13

© Nexperia B.V. 2021. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 12 July 2021