

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

N-channel TrenchMOS logic level FET Rev. 01 — 22 August 2007

Product data sheet

Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology.

1.2 Features

- Logic level threshold
- Optimized for use in DC-to-DC converters
- 100 % R_G tested

- Lead-free package
- Very low switching and conduction losses
- 100 % ruggedness tested

1.3 Applications

- DC-to-DC converters
- Voltage regulators

- Switched-mode power supplies
- PC Motherboards

1.4 Quick reference data

- $V_{DS} \le 25 \text{ V}$
- \blacksquare R_{DSon} $\leq 4.0 \text{ m}\Omega$

- $I_D \le 99 A$
- $Q_{GD} = 5 \text{ nC (typ)}$

Pinning information

Pinning Table 1.

Tubic I.	i iiiiiiig		
Pin	Description	Simplified outline	Symbol
1, 2, 3	source (S)		
4	gate (G)	mb	D
mb	mounting base; connected to drain (D)	1 2 3 4	mbb076 S
		SOT669 (LFPAK)	

N-channel TrenchMOS logic level FET

3. Ordering information

Table 2. Ordering information

Type number	Package		
	Name	Description	Version
PH4025L	LFPAK	plastic single-ended surface-mounted package (Ifpak); 4 leads	SOT669

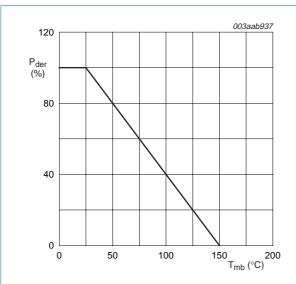
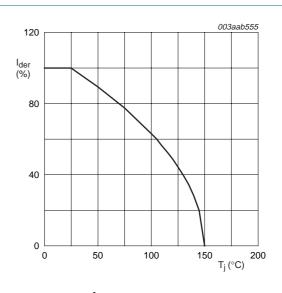

4. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 150 °C	-	25	V
V_{DGR}	drain-gate voltage (DC)	$25 ^{\circ}\text{C} \le \text{T}_{\text{j}} \le 150 ^{\circ}\text{C}; \text{R}_{\text{GS}} = 20 \text{k}\Omega$	-	25	V
V_{GS}	gate-source voltage		-	±20	V
I_D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 2</u> and <u>3</u>	-	99	Α
		T_{mb} = 100 °C; V_{GS} = 10 V; see <u>Figure 2</u>	-	67.5	Α
I_{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \mu s$; see Figure 3	-	300	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 1</u>	-	46.4	W
T _{stg}	storage temperature		-55	+150	°C
Tj	junction temperature		-55	+150	°C
Source-o	drain diode				
Is	source current	T _{mb} = 25 °C	-	52	Α
I _{SM}	peak source current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \mu s$	-	208	Α
Avalanch	ne ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	unclamped inductive load; I_D = 56 A; t_p = 0.16 ms; $V_{DS} \le$ 25 V; R_{GS} = 50 Ω ; V_{GS} = 10 V; starting at T_j = 25 °C	-	150	mJ

N-channel TrenchMOS logic level FET

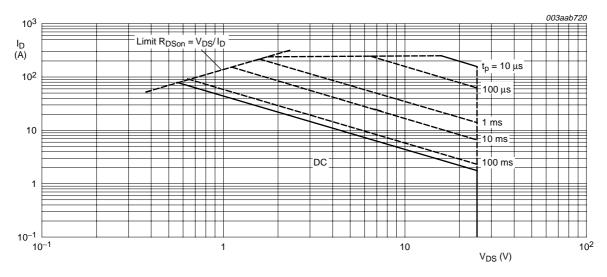

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

Fig 1. Normalized total power dissipation as a function of mounting base temperature

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100 \%$$

Fig 2. Normalized continuous drain current as a function of mounting base temperature

 $T_{mb} = 25 \, ^{\circ}C$

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

PH4025L **NXP Semiconductors**

N-channel TrenchMOS logic level FET

Thermal characteristics

Table 4. **Thermal characteristics**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	2	K/W

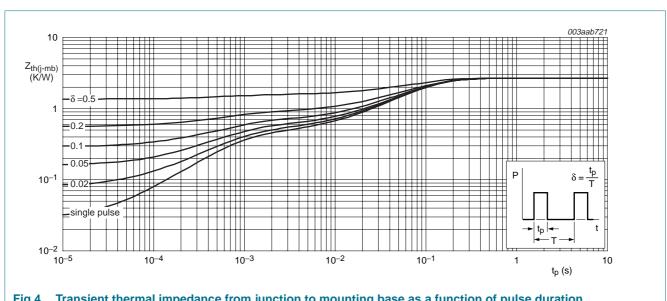


Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

N-channel TrenchMOS logic level FET

6. Characteristics

Table 5. Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.

=	Parameter	Conditions	Min	Тур	Max	Unit
	naracteristics					
$V_{(BR)DSS}$	drain-source breakdown	$I_D = 250 \mu A; V_{GS} = 0 V$				
	voltage	T _j = 25 °C	25	-	-	V
		T _j = −55 °C	22.5	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; see <u>Figure 9</u> and <u>10</u>				
		T _j = 25 °C	1.3	1.7	2.15	V
		T _j = 150 °C	8.0	-	-	V
		$T_j = -55 ^{\circ}C$	-	-	2.6	V
I_{DSS}	drain leakage current	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	1	μΑ
		T _j = 150 °C	-	-	100	μΑ
I_{GSS}	gate leakage current	$V_{GS} = \pm 16 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	100	nΑ
R_G	gate resistance	f = 1 MHz	-	0.48	-	Ω
R_{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}$; $I_D = 25 \text{ A}$; see Figure 6 and 8				
		T _j = 25 °C	-	3.4	4.0	$m\Omega$
		T _j = 150 °C	-	5.4	6.4	$m\Omega$
		$V_{GS} = 4.5 \text{ V}$; $I_D = 25 \text{ A}$; see Figure 6 and 8	-	5.1	6.2	$m\Omega$
Dynamic	c characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$	-	21.3	-	nC
Q_{GS}	gate-source charge	see Figure 11 and 12	-	8.8	-	nC
Q _{GS1}	pre-V _{GS(th)} gate-source charge		-	5.3	-	nC
Q _{GS2}	post-V _{GS(th)} gate-source charge		-	3.4	-	nC
Q_{GD}	gate-drain charge		-	5	-	nC
$V_{GS(pl)}$	gate-source plateau voltage		-	2.8	-	V
Q _{G(tot)}	total gate charge	$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 4.5 \text{ V}$	-	1.35	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 12 \text{ V}; f = 1 \text{ MHz};$	-	2601	-	pF
C _{oss}	output capacitance	see Figure 14	-	645	-	pF
C _{rss}	reverse transfer capacitance		-	287	-	pF
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 0 \text{ V}; f = 1 \text{ MHz}$	-	2973	-	pF
t _{d(on)}	turn-on delay time	V_{DS} =12 V; R_L = 0.5 Ω ; V_{GS} = 4.5 V;	-	28.3	-	ns
t _r	rise time	$R_G = 5.6 \Omega$	-	52	-	ns
t _{d(off)}	turn-off delay time		-	35	-	ns
t _f	fall time		-	24	-	ns
Source-	drain diode					
V_{SD}	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; see <u>Figure 13</u>	-	0.8	1.3	V
t _{rr}	reverse recovery time	$I_S = 25 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V};$	-	38	-	ns
Q _r	recovered charge	V _R = 20 V	-	11	-	nC

20

 R_{DSon} (m Ω)

N-channel TrenchMOS logic level FET

003aab723

3.3

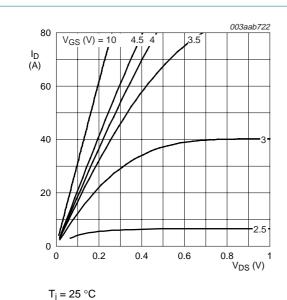
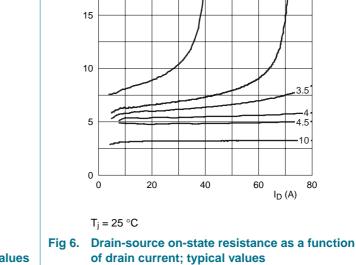



Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

 $V_{GS}(V) = 3$

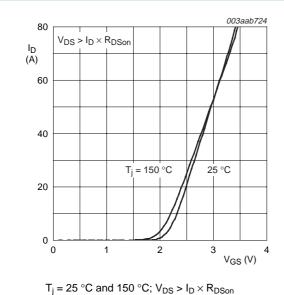
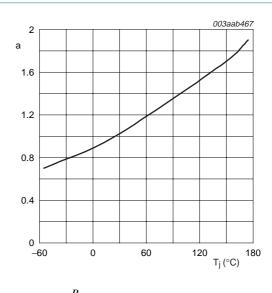
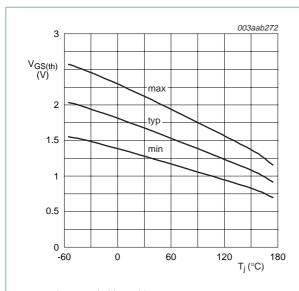
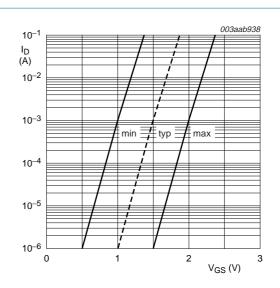



Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values



 $a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$

Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature


PH4025L_1 © NXP B.V. 2007. All rights reserved.

N-channel TrenchMOS logic level FET

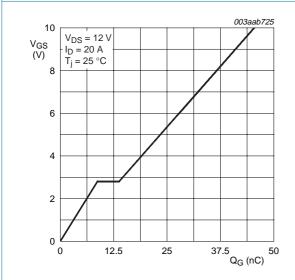

 $I_D = 1 \text{ mA}; V_{DS} = V_{GS}$

Fig 9. Gate-source threshold voltage as a function of junction temperature

 $T_i = 25 \,^{\circ}C; \, V_{DS} = 5 \,^{\circ}V$

Fig 10. Sub-threshold drain current as a function of gate-source voltage

 $I_D = 20 \text{ A}; V_{DS} = 12 \text{ V}$

Fig 11. Gate-source voltage as a function of gate charge; typical values

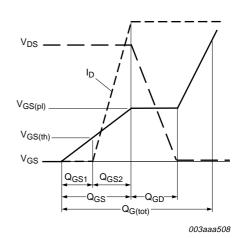


Fig 12. Gate charge waveform definitions

N-channel TrenchMOS logic level FET

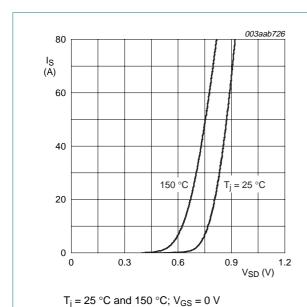


Fig 13. Source current as a function of source-drain voltage; typical values

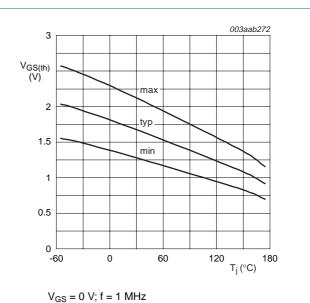


Fig 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

N-channel TrenchMOS logic level FET

7. Package outline

Plastic single-ended surface-mounted package (LFPAK); 4 leads

SOT669

04-10-13

06-03-16

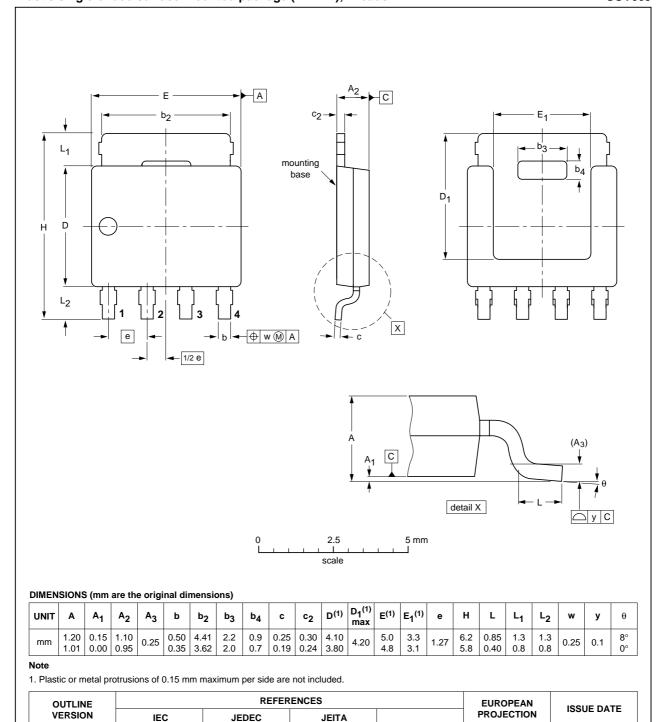


Fig 15. Package outline SOT669 (LFPAK)

SOT669

PH4025L_1 © NXP B.V. 2007. All rights reserved.

MO-235

N-channel TrenchMOS logic level FET

8. Revision history

Table 6. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PH4025L_1	20070822	Product data sheet	-	-

N-channel TrenchMOS logic level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to

result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

PH4025L_1 © NXP B.V. 2007. All rights reserved.

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Revision history 10
9	Legal information
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks11
10	Contact information 11
11	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 August 2007 Document identifier: PH4025L_1