1. General description

NPN high-voltage low V_{CESat} transistor in a SOT223 (SC-73) medium power Surface-Mounted Device (SMD) plastic package.
PNP complement: PBHV9560Z-Q

2. Features and benefits

- Low collector-emitter saturation voltage V_{CESat}
- High collector current capability
- High collector current gain h_{FE} at high I_C
- Qualified according to AEC-Q101 and recommended for use in automotive applications

3. Applications

- Electronic ballast for fluorescent lighting
- LED driver for LED chain module
- LCD backlighting
- High Intensity Discharge (HID) front lighting
- Automotive motor management
- Hook switch for wired telecom
- Switch Mode Power Supply (SMPS)

4. Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CESM}</td>
<td>collector-emitter peak voltage</td>
<td>$V_{BE} = 0$ V</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter voltage</td>
<td>open base</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>collector current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>A</td>
</tr>
<tr>
<td>h_{FE}</td>
<td>DC current gain</td>
<td>$V_{CE} = 10$ V; $I_C = 50$ mA; $T_{amb} = 25$ °C</td>
<td></td>
<td>70</td>
<td>135</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Pinning information

Table 2. Pinning information

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>emitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>collector</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Ordering information

Table 3. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBHV8560Z-Q</td>
<td>SC-73</td>
<td>plastic, surface-mounted package with increased heatsink; 4 leads; 2.3 mm pitch; 6.5 mm x 3.5 mm x 1.65 mm body</td>
<td>SOT223</td>
<td></td>
</tr>
</tbody>
</table>

7. Marking

Table 4. Marking codes

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBHV8560Z-Q</td>
<td>HV856Z</td>
</tr>
</tbody>
</table>

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CBO}</td>
<td>collector-base voltage</td>
<td>open emitter</td>
<td>-</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter voltage</td>
<td>open base</td>
<td>-</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_{CESM}</td>
<td>collector-emitter peak voltage</td>
<td>V_{BE} = 0 V</td>
<td>-</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>emitter-base voltage</td>
<td>open collector</td>
<td>-</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I_{C}</td>
<td>collector current</td>
<td></td>
<td>-</td>
<td>0.5</td>
<td>A</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>T_{amb} ≤ 25 °C</td>
<td>[1]</td>
<td>0.65</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[2]</td>
<td>1.4</td>
<td>W</td>
</tr>
<tr>
<td>T_{j}</td>
<td>junction temperature</td>
<td></td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{amb}</td>
<td>ambient temperature</td>
<td></td>
<td>-55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td></td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

9. Thermal characteristics

Table 6. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th(j-a)}$</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air</td>
<td>[1]</td>
<td>-</td>
<td>-</td>
<td>190 K/W</td>
</tr>
<tr>
<td>$R_{th(j-sp)}$</td>
<td>thermal resistance from junction to solder point</td>
<td></td>
<td>[2]</td>
<td>-</td>
<td>-</td>
<td>89 K/W</td>
</tr>
</tbody>
</table>

![Power derating curves](aaa-013425)

(1) FR4 PCB, mounting pad for collector 6 cm2
(2) FR4 PCB, standard footprint

Fig. 1. Power derating curves

![Transient thermal impedance](aaa-013426)

FR4 PCB, single-sided copper, tin-plated and standard footprint.

Fig. 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
10. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CBO}</td>
<td>collector-base cut-off current</td>
<td>$V_{CB} = 400 , V; I_E = 0 , A; T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>I_{EBO}</td>
<td>emitter-base cut-off current</td>
<td>$V_{EB} = 4 , V; I_C = 0 , A; T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>I_{CES}</td>
<td>collector-emitter cut-off current</td>
<td>$V_{CE} = 400 , V; V_{BE} = 0 , V; T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>h_{FE}</td>
<td>DC current gain</td>
<td>$V_{CE} = 10 , V; I_C = 50 , mA; T_{amb} = 25 , ^\circ C$</td>
<td>70</td>
<td>135</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CE} = 10 , V; I_C = 100 , mA; t_p \leq 300 , \mu s; \delta \leq 0.02; T_{amb} = 25 , ^\circ C$; pulsed</td>
<td>70</td>
<td>135</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>V_{CEsat}</td>
<td>collector-emitter saturation voltage</td>
<td>$I_C = 50 , mA; I_B = 5 , mA; T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 100 , mA; I_B = 20 , mA; t_p \leq 300 , \mu s; \delta \leq 0.02; T_{amb} = 25 , ^\circ C$; pulsed</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>V_{BEsat}</td>
<td>base-emitter saturation voltage</td>
<td>$I_C = 50 , mA; I_B = 5 , mA$; pulsed; $t_p \leq 300 , \mu s; \delta \leq 0.02; T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>950</td>
<td>mV</td>
</tr>
<tr>
<td>C_c</td>
<td>collector capacitance</td>
<td>$V_{CE} = 20 , V; I_E = 0 , A; i_e = 0 , A; f = 1 , MHz; T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>C_e</td>
<td>emitter capacitance</td>
<td>$V_{EB} = 0.5 , V; I_C = 0 , A; i_C = 0 , A; f = 1 , MHz; T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>710</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6 cm².

Fig. 3. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
PBHV8560Z-Q

600 V, 0.5 A NPN high-voltage low VCEsat transistor

Fig. 4. DC current gain as a function of collector current; typical values

- $V_{CE} = 10$ V
- (1) $T_{amb} = 100$ °C
- (2) $T_{amb} = 25$ °C
- (3) $T_{amb} = −55$ °C

Fig. 5. DC current gain as a function of collector current; typical values

- $T_{amb} = 25$ °C
- (1) $V_{CE} = 50$ V
- (2) $V_{CE} = 25$ V
- (3) $V_{CE} = 10$ V

Fig. 6. Collector current as a function of collector-emitter voltage; typical values

- $T_{amb} = 25$ °C

Fig. 7. Base-emitter voltage as a function of collector current; typical values

- $V_{CE} = 10$ V
- (1) $T_{amb} = −55$ °C
- (2) $T_{amb} = 25$ °C
- (3) $T_{amb} = 100$ °C

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2023. All rights reserved

Product data sheet 17 July 2023
Fig. 8. Base-emitter saturation voltage as a function of collector current; typical values

Fig. 9. Collector-emitter saturation voltage as a function of collector current; typical values

Fig. 10. Collector-emitter saturation voltage as a function of collector current; typical values

Fig. 11. Collector-emitter saturation resistance as a function of collector current; typical values
11. Test information

Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - *Stress test qualification for discrete semiconductors*, and is suitable for use in automotive applications.

12. Package outline

![Package outline SC-73 (SOT223)](image_url)

Fig. 13. Package outline SC-73 (SOT223)
13. Soldering

Fig. 14. Reflow soldering footprint for SC-73 (SOT223)

Fig. 15. Wave soldering footprint for SC-73 (SOT223)
14. Revision history

Table 8. Revision history

<table>
<thead>
<tr>
<th>Data sheet ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBHV8560Z-Q v.1</td>
<td>20230717</td>
<td>Product data sheet</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2023. All rights reserved
15. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term "short data sheet" is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

Product data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities agreed otherwise in writing. Nexperia reserves the right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Nexperia products are intended for use in automotive applications. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia and its suppliers accept no liability for the consequences of use of such information. Nexperia does not give any representations or warranties as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Nexperia

PBHV8560Z-Q

600 V, 0.5 A NPN high-voltage low VCEsat transistor

Contents

1. General description.................................1
2. Features and benefits..............................1
3. Applications..1
4. Quick reference data...............................1
5. Pinning information...............................2
6. Ordering information..............................2
7. Marking..2
8. Limiting values....................................2
9. Thermal characteristics...........................3
10. Characteristics......................................4
11. Test information....................................7
12. Package outline....................................7
13. Soldering..8
14. Revision history....................................9
15. Legal information..................................10

© Nexperia B.V. 2023. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 17 July 2023