1. General description

NPN general-purpose transistor in an ultra small DFN1110D-3 (SOT8015) leadless Surface-Mounted Device (SMD) plastic package with side-wettable flanks.

Table 1. Product overview

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>JEDEC</th>
<th>Version</th>
<th>PNP complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC817-16QB-Q</td>
<td>DFN1110D-3</td>
<td>MO340-BA</td>
<td>SOT8015</td>
<td>BC807-16QB-Q</td>
</tr>
<tr>
<td>BC817-25QB-Q</td>
<td></td>
<td></td>
<td></td>
<td>BC807-25QB-Q</td>
</tr>
<tr>
<td>BC817-40QB-Q</td>
<td></td>
<td></td>
<td></td>
<td>BC807-40QB-Q</td>
</tr>
</tbody>
</table>

2. Features and benefits

- High power dissipation capability
- High current
- Three current gain selections
- Suitable for Automatic Optical Inspection (AOI) of solder joint
- Smaller footprint compared to conventional leaded SMD packages
- Low package height of 0.5 mm
- Qualified according to AEC-Q101 and recommended for use in automotive applications

3. Applications

- General-purpose switching and amplification
- Space restricted applications

4. Quick reference data

Table 2. Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter voltage</td>
<td>open base; $T_{amb} = 25$ °C</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>collector current</td>
<td>$T_{amb} = 25$ °C</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CM}</td>
<td>peak collector current</td>
<td>single pulse; $t_p \leq 1$ ms; $T_{amb} = 25$ °C</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>h_{FE}</td>
<td>DC current gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC817-16QB-Q</td>
<td>$V_{CE} = 1$ V; $I_C = 100$ mA $T_{amb} = 25$ °C</td>
<td>[1] 100</td>
<td>-</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC817-25QB-Q</td>
<td>$V_{CE} = 1$ V; $I_C = 100$ mA $T_{amb} = 25$ °C</td>
<td>[1] 160</td>
<td>-</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC817-40QB-Q</td>
<td>$V_{CE} = 1$ V; $I_C = 100$ mA $T_{amb} = 25$ °C</td>
<td>[1] 250</td>
<td>-</td>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] pulsed; $t_p \leq 300$ μs; $\delta \leq 0.02$
5. Pinning information

Table 3. Pinning

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>emitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>collector</td>
<td></td>
<td>DFN1110D-3 (SOT8015)</td>
</tr>
</tbody>
</table>

6. Ordering information

Table 4. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC817-16QB-Q</td>
<td>DFN1110D-3</td>
<td>DFN1110D-3: plastic thermal enhanced ultra thin small outline package; no leads; 3 terminals; body: 1.1 x 1.0 x 0.5 mm</td>
<td>SOT8015 (MO340-BA)</td>
</tr>
<tr>
<td>BC817-25QB-Q</td>
<td>DFN1110D-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC817-40QB-Q</td>
<td>DFN1110D-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Marking

Table 5. Marking

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC817-16QB-Q</td>
<td>B3</td>
</tr>
<tr>
<td>BC817-25QB-Q</td>
<td>B4</td>
</tr>
<tr>
<td>BC817-40QB-Q</td>
<td>B5</td>
</tr>
</tbody>
</table>
8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CBO}</td>
<td>collector-base voltage</td>
<td>open emitter; $T_{amb} = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter voltage</td>
<td>open base; $T_{amb} = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>emitter-base voltage</td>
<td>open collector; $T_{amb} = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>I_{C}</td>
<td>collector current</td>
<td>$T_{amb} = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CM}</td>
<td>peak collector current</td>
<td>single pulse; $t_p \leq 1 , \text{ms}; T_{amb} = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>I_{BM}</td>
<td>peak base current</td>
<td>single pulse; $t_p \leq 1 , \text{ms}; T_{amb} = 25 , ^\circ\text{C}$</td>
<td>-</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>$T_{amb} = 25 , ^\circ\text{C}$</td>
<td>[1]</td>
<td>350</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[2]</td>
<td>460</td>
<td>mW</td>
</tr>
<tr>
<td>T_{j}</td>
<td>junction temperature</td>
<td></td>
<td>-</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{amb}</td>
<td>ambient temperature</td>
<td></td>
<td>-55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td></td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) FR4 PCB; single-sided 70 μm copper, tin-plated and standard footprint
(2) FR4 PCB; single-sided 35 μm copper, tin-plated and standard footprint

Fig. 1. Power derating curves for SOT8015
9. Thermal characteristics

Table 7. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th(j-a)}$</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air; $T_{amb} = 25$ °C [1]</td>
<td>-</td>
<td>-</td>
<td>358</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device mounted on an FR4 PCB, single-sided 35 μm copper, tin-plated and standard footprint. [1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device mounted on an FR4 PCB, single-sided 70 μm copper, tin-plated and standard footprint. [2]</td>
<td></td>
<td></td>
<td>272</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Fig. 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

Fig. 3. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
10. Characteristics

Table 8. Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{(BR)CBO}$</td>
<td>collector-base breakdown voltage</td>
<td>$I_C = 100 , \mu A; , I_E = 0 , A; , T_{amb} = 25 , ^\circ C$</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>$V_{(BR)CEO}$</td>
<td>collector-emitter breakdown voltage</td>
<td>$I_C = 10 , mA; , I_E = 0 , A; , T_{amb} = 25 , ^\circ C$</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>$V_{(BR)EBO}$</td>
<td>emitter-base breakdown voltage</td>
<td>$I_E = 100 , \mu A; , I_C = 0 , A; , T_{amb} = 25 , ^\circ C$</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>I_{CBO}</td>
<td>collector-base cut-off current</td>
<td>$V_{CB} = 20 , V; , I_E = 0 , A; , T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CB} = 20 , V; , I_E = 0 , A; , T_j = 150 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>I_{EBO}</td>
<td>emitter-base cut-off current</td>
<td>$V_{EB} = 5 , V; , I_C = 0 , A; , T_{amb} = 25 , ^\circ C$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>h_{FE}</td>
<td>DC current gain</td>
<td>$V_{CE} = 1 , V; , I_C = 100 , mA; , T_{amb} = 25 , ^\circ C$</td>
<td>[1]</td>
<td>100</td>
<td>-</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CE} = 1 , V; , I_C = 500 , mA; , T_{amb} = 25 , ^\circ C$</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>V_{CEsat}</td>
<td>collector-emitter saturation voltage</td>
<td>$I_C = 500 , mA; , I_B = 50 , mA; , T_{amb} = 25 , ^\circ C$</td>
<td>[1]</td>
<td>-</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>V_{BE}</td>
<td>base-emitter voltage</td>
<td>$V_{CE} = 1 , V; , I_C = 500 , mA; , T_{amb} = 25 , ^\circ C$</td>
<td>[1]</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>f_T</td>
<td>transition frequency</td>
<td>$V_{CE} = 5 , V; , I_C = 10 , mA; , f = 100 , MHz; , T_{amb} = 25 , ^\circ C$</td>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C_C</td>
<td>collector capacitance</td>
<td>$V_{CB} = 10 , V; , I_E = I_a = 0 , A; , f = 1 , MHz; , T_{amb} = 25 , ^\circ C$</td>
<td></td>
<td>3</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

[1] pulsed: $t_p \leq 300 \, \mu s; \, \delta \leq 0.02$
Nexperia

BC817QB-Q series

45 V, 500 mA NPN general-purpose transistors

Fig. 4. BC817-16QB: DC current gain as a function of collector current; typical values

\[
\begin{align*}
V_{CE} &= 1 \, \text{V} \\
(1) \ T_{amb} &= 150 \, ^\circ\text{C} \\
(2) \ T_{amb} &= 25 \, ^\circ\text{C} \\
(3) \ T_{amb} &= -55 \, ^\circ\text{C}
\end{align*}
\]

Fig. 5. BC817-16QB: Collector current as a function of collector-emitter voltage; typical values

\[
\begin{align*}
T_{amb} &= 25 \, ^\circ\text{C} \\
(1) \ I_B &= 16.0 \, \text{mA} \\
(2) \ I_B &= 14.4 \, \text{mA} \\
(3) \ I_B &= 12.8 \, \text{mA} \\
(4) \ I_B &= 11.2 \, \text{mA} \\
(5) \ I_B &= 9.6 \, \text{mA} \\
(6) \ I_B &= 8.0 \, \text{mA} \\
(7) \ I_B &= 6.4 \, \text{mA} \\
(8) \ I_B &= 4.8 \, \text{mA} \\
(9) \ I_B &= 3.2 \, \text{mA} \\
(10) \ I_B &= 1.6 \, \text{mA}
\end{align*}
\]

Fig. 6. BC817-16QB: Base-emitter saturation voltage as a function of collector current; typical values

\[
\begin{align*}
\frac{I_C}{I_B} &= 10 \\
(1) \ T_{amb} &= -55 \, ^\circ\text{C} \\
(2) \ T_{amb} &= 25 \, ^\circ\text{C} \\
(3) \ T_{amb} &= 150 \, ^\circ\text{C}
\end{align*}
\]

Fig. 7. BC817-16QB: Collector-emitter saturation voltage as a function of collector current; typical values

\[
\begin{align*}
\frac{I_C}{I_B} &= 10 \\
(1) \ T_{amb} &= 150 \, ^\circ\text{C} \\
(2) \ T_{amb} &= 25 \, ^\circ\text{C} \\
(3) \ T_{amb} &= -55 \, ^\circ\text{C}
\end{align*}
\]
BC817QB-Q series

45 V, 500 mA NPN general-purpose transistors

Fig. 8. BC817-25QB: DC current gain as a function of collector current; typical values

V_{CE} = 1 V

1. \(T_{\text{amb}} = 150 \, ^\circ\text{C} \)
2. \(T_{\text{amb}} = 25 \, ^\circ\text{C} \)
3. \(T_{\text{amb}} = -55 \, ^\circ\text{C} \)

Fig. 9. BC817-25QB: Collector current as a function of collector-emitter voltage; typical values

\(T_{\text{amb}} = 25 \, ^\circ\text{C} \)

1. \(I_{B} = 13.0 \, \text{mA} \)
2. \(I_{B} = 11.7 \, \text{mA} \)
3. \(I_{B} = 10.4 \, \text{mA} \)
4. \(I_{B} = 9.1 \, \text{mA} \)
5. \(I_{B} = 7.8 \, \text{mA} \)
6. \(I_{B} = 6.5 \, \text{mA} \)
7. \(I_{B} = 5.2 \, \text{mA} \)
8. \(I_{B} = 3.9 \, \text{mA} \)
9. \(I_{B} = 2.6 \, \text{mA} \)
10. \(I_{B} = 1.3 \, \text{mA} \)

Fig. 10. BC817-25QB: Base-emitter saturation voltage as a function of collector current; typical values

IC/IB = 10

1. \(T_{\text{amb}} = -55 \, ^\circ\text{C} \)
2. \(T_{\text{amb}} = 25 \, ^\circ\text{C} \)
3. \(T_{\text{amb}} = 150 \, ^\circ\text{C} \)

Fig. 11. BC817-25QB: Collector-emitter saturation voltage as a function of collector current; typical values

IC/IB = 10

1. \(T_{\text{amb}} = 150 \, ^\circ\text{C} \)
2. \(T_{\text{amb}} = 25 \, ^\circ\text{C} \)
3. \(T_{\text{amb}} = -55 \, ^\circ\text{C} \)
BC817QB-Q series

45 V, 500 mA NPN general-purpose transistors

Fig. 12. BC817-40QB-Q: DC current gain as a function of collector current; typical values

- $V_{CE} = 1$ V
- (1) $T_{amb} = 150 \degree C$
- (2) $T_{amb} = 25 \degree C$
- (3) $T_{amb} = -55 \degree C$

Fig. 13. BC817-40QB : Transition frequency as a function of collector current; typical values

- $I_{B} = 12.0$ mA
- (1) $T_{amb} = -55 \degree C$
- (2) $T_{amb} = 25 \degree C$
- (3) $T_{amb} = 150 \degree C$
- (4) $I_{B} = 8.4$ mA
- (5) $I_{B} = 7.2$ mA
- (6) $I_{B} = 6.0$ mA
- (7) $I_{B} = 4.8$ mA
- (8) $I_{B} = 3.6$ mA
- (9) $I_{B} = 2.4$ mA
- (10) $I_{B} = 1.2$ mA

Fig. 14. BC817-40QB-Q: Base-emitter saturation voltage as a function of collector current; typical values

- $I_{C}/I_{B} = 10$
- (1) $T_{amb} = -55 \degree C$
- (2) $T_{amb} = 25 \degree C$
- (3) $T_{amb} = 150 \degree C$

Fig. 15. BC817-40QB-Q: Collector-emitter saturation voltage as a function of collector current; typical values

- $I_{C}/I_{B} = 10$
- (1) $T_{amb} = 150 \degree C$
- (2) $T_{amb} = 25 \degree C$
- (3) $T_{amb} = -55 \degree C$
11. Test information

11.1. Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - *Stress test qualification for discrete semiconductors*, and is suitable for use in automotive applications.
12. Package outline

DFN1110D-3: plastic, leadless extremely thin small outline package with side-wettable flanks (SWF);
3 terminals; 0.65 mm pitch; 1.1 mm x 1 mm x 0.48 mm body

Dimensions (mm are the original dimensions)

<table>
<thead>
<tr>
<th>Unit</th>
<th>A</th>
<th>A1</th>
<th>b</th>
<th>D</th>
<th>D1</th>
<th>E1</th>
<th>E</th>
<th>e1</th>
<th>e2</th>
<th>G</th>
<th>K</th>
<th>L</th>
<th>T</th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>0.50</td>
<td>0.040</td>
<td>0.30</td>
<td>0.95</td>
<td>0.48</td>
<td>0.43</td>
<td>0.65</td>
<td>0.58</td>
<td>0.19</td>
<td>0.09</td>
<td>0.005</td>
<td>0.20</td>
<td>0.23</td>
<td>0.16</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>nom</td>
<td>0.47</td>
<td>0.020</td>
<td>0.25</td>
<td>1.1</td>
<td>0.90</td>
<td>1</td>
<td>0.43</td>
<td>0.65</td>
<td>0.58</td>
<td>0.19</td>
<td>0.09</td>
<td>0.005</td>
<td>0.20</td>
<td>0.23</td>
<td>0.16</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>min</td>
<td>0.44</td>
<td>0.005</td>
<td>0.22</td>
<td>0.87</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Side Wettable Flank, protrusion max. 0.02 mm.
2. Visible depend upon used manufacturing technology.
3. Included plating thickness.

Fig. 16. Package outline DFN1110D-3 (SOT8015)
13. Soldering

Fig. 17. Reflow soldering footprint for DFN1110D-3 (SOT8015)
14. Revision history

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC817QB-Q_SER v.2</td>
<td>20210504</td>
<td>Product data sheet</td>
<td>-</td>
<td>BC817QB-Q_SER v.1</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Features and benefits: added recommendation for automotive applications</td>
</tr>
<tr>
<td>BC817QB-Q_SER v.1</td>
<td>20210219</td>
<td>Product data sheet</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
15. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1][2]</td>
<td>[3]</td>
<td>This document contains data from the objective specification for product development.</td>
</tr>
<tr>
<td>Objective [short] data sheet</td>
<td>Development</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term "short data sheet" is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published. For the latest product status information, please see the product's web page on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities not agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description ... 1
2. Features and benefits .. 1
3. Applications .. 1
4. Quick reference data .. 1
5. Pinning information ... 2
6. Ordering information .. 2
7. Marking ... 2
8. Limiting values .. 3
9. Thermal characteristics .. 4
10. Characteristics ... 5
11. Test information ... 9
11.1. Quality information ... 9
12. Package outline ... 10
13. Soldering ... 11
14. Revision history .. 12
15. Legal information ... 13

© Nexperia B.V. 2021. All rights reserved
For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 4 May 2021