Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:
- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia
BAW101S
High voltage double diode
FEATURES

- Small plastic SMD package
- High switching speed: max. 50 ns
- High continuous reverse voltage: 300 V
- Electrically insulated diodes.

APPLICATIONS

- High voltage switching
- Automotive
- Communication.

DESCRIPTION

The BAW101S is a high-speed switching diode array with two separate dice, fabricated in planar technology and encapsulated in a small SOT363 plastic SMD package.

MARKING

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>MARKING CODE(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAW101S</td>
<td>K2*</td>
</tr>
</tbody>
</table>

Note
1. ∗ = p: Made in Hong Kong.
 ∗ = t: Made in Malaysia.
 ∗ = W: Made in China.

PINNING

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>anode 1</td>
</tr>
<tr>
<td>2</td>
<td>n.c.</td>
</tr>
<tr>
<td>3</td>
<td>cathode 2</td>
</tr>
<tr>
<td>4</td>
<td>anode 2</td>
</tr>
<tr>
<td>5</td>
<td>n.c.</td>
</tr>
<tr>
<td>6</td>
<td>cathode 1</td>
</tr>
</tbody>
</table>

Fig. 1 Simplified outline (SOT363) and symbol.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_R</td>
<td>continuous reverse voltage</td>
<td>series connection</td>
<td>–</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>V_{RRM}</td>
<td>repetitive peak reverse voltage</td>
<td>series connection</td>
<td>–</td>
<td>300</td>
<td>V</td>
</tr>
<tr>
<td>I_F</td>
<td>continuous forward current</td>
<td>single diode loaded; note 1; see Fig.2</td>
<td>–</td>
<td>250</td>
<td>mA</td>
</tr>
<tr>
<td>I_{FRM}</td>
<td>repetitive peak forward current</td>
<td>double diode loaded; note 1; see Fig.2</td>
<td>–</td>
<td>140</td>
<td>mA</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>non-repetitive peak forward current</td>
<td>square wave; $T_j = 25 ^\circ C$ prior to surge; $t = 1 \mu s$</td>
<td>–</td>
<td>4.5</td>
<td>A</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>$T_{amb} = 25 ^\circ C$; note 1</td>
<td>–</td>
<td>350</td>
<td>mW</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td>–</td>
<td>–150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_j</td>
<td>junction temperature</td>
<td>–</td>
<td>–150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{amb}</td>
<td>operating ambient temperature</td>
<td>–</td>
<td>–150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Device mounted on an FR4 printed-circuit board, cathode-lead mounting pad = 1 cm².

ELECTRICAL CHARACTERISTICS
$T_j = 25 ^\circ C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{BR(R)}$</td>
<td>reverse breakdown voltage</td>
<td>$I_R = 100 \mu A$</td>
<td>300</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>$I_F = 100 mA$; note 1</td>
<td>–</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>$V_R = 250 V$; $T_{amb} = 150 ^\circ C$</td>
<td>–</td>
<td>150</td>
<td>nA</td>
</tr>
<tr>
<td>I_{rr}</td>
<td>reverse recovery time</td>
<td>when switched from $I_F = 30 mA$ to $I_R = 30 mA$; $R_L = 100 \Omega$; measured at $I_R = 3 mA$</td>
<td>–</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>C_d</td>
<td>diode capacitance</td>
<td>$V_R = 0 V$; $f = 1 MHz$</td>
<td>–</td>
<td>2</td>
<td>pF</td>
</tr>
</tbody>
</table>

Note:
1. Pulse test: pulse width = 300 μs; $\delta = 0.02$.
THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{thj-s}</td>
<td>thermal resistance from junction to soldering point</td>
<td>note 1</td>
<td>255</td>
<td>K/W</td>
</tr>
<tr>
<td>R_{thj-a}</td>
<td>thermal resistance from junction to ambient</td>
<td>note 2</td>
<td>357</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Notes
1. One or more diodes loaded.
2. Device mounted on an FR4 printed-circuit board, cathode-lead mounting pad = 1 cm².

GRAPHICAL DATA

Fig. 2 Maximum permissible continuous forward current as a function of ambient temperature.

Fig. 3 Forward current as a function of forward voltage.

(1) Single diode loaded.
(2) Double diode loaded.
Device mounted on an FR4 printed-circuit board.
Cathode-lead mounting pad = 1 cm².

(1) $T_j = 150 ^\circ$ C; typical values.
(2) $T_j = 25 ^\circ$ C; typical values.
(3) $T_j = 25 ^\circ$ C; maximum values.
High voltage double diode

Based on square wave currents.

$T_j = 25 \, ^\circ C$ prior to surge.

Fig. 4 Maximum permissible non-repetitive peak forward current as a function of pulse duration.

(1) $V_R = V_{R\text{MAX}}$: maximum values.
(2) $V_R = V_{R\text{MAX}}$: typical values.

Fig. 5 Reverse current as a function of junction temperature.

Fig. 6 Diode capacitance as a function of reverse voltage; typical values.
Fig. 7 Maximum permissible continuous reverse voltage as a function of ambient temperature.
High voltage double diode
BAW101S

PACKAGE OUTLINE
Plastic surface mounted package; 6 leads
SOT363

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A</th>
<th>A1 max</th>
<th>bp</th>
<th>c</th>
<th>D</th>
<th>E</th>
<th>e</th>
<th>e1</th>
<th>H_E</th>
<th>L_p</th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.1</td>
<td>0.8</td>
<td>0.30</td>
<td>0.25</td>
<td>2.2</td>
<td>1.35</td>
<td>1.35</td>
<td>0.65</td>
<td>2.2</td>
<td>2.0</td>
<td>0.45</td>
<td>0.25</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

OUTLINE

REFERENCES

EUROPEAN

VERSION

PROJECTION

REFERENCES

ISSUE DATE

SOT363

IEC

JEDEC

EIAJ

SC-88

97-02-28

2003 May 13
High voltage double diode

BAW101S

DATA SHEET STATUS

<table>
<thead>
<tr>
<th>DOCUMENT STATUS(1)</th>
<th>PRODUCT STATUS(2)</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective data sheet</td>
<td>Development</td>
<td>This document contains data from the objective specification for product development.</td>
</tr>
<tr>
<td>Preliminary data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

Notes

1. Please consult the most recently issued document before initiating or completing a design.
2. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

DISCLAIMERS

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
NXP Semiconductors

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors. No changes were made to the content, except for the legal definitions and disclaimers.

Contact information

For additional information please visit: http://www.nxp.com
For sales offices addresses send e-mail to: salesaddresses@nxp.com

© NXP B.V. 2009

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands 613514/01/pp9 Date of release: 2003 May 13 Document order number: 9397 750 11148