1. Product profile

1.1 General description
Single high-voltage switching diode, encapsulated in a SOD123F small and flat lead Surface-Mounted Device (SMD) plastic package.

1.2 Features
- Small and flat lead SMD plastic package
- Reverse voltage: $V_R \leq 200$ V

1.3 Applications
- General-purpose switching

1.4 Quick reference data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F</td>
<td>forward current</td>
<td>[1]</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>V_R</td>
<td>reverse voltage</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>reverse recovery time</td>
<td>[2]</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>ns</td>
</tr>
</tbody>
</table>

[1] Pulse test: $t_p \leq 300 \mu$s; $\delta \leq 0.02$.
[2] When switched from $I_F = 30$ mA to $I_R = 30$ mA; $R_L = 100$ Ω; measured at $I_R = 3$ mA.
2. Pinning information

Table 2. Pinning

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cathode</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>anode</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] The marking bar indicates the cathode.

3. Ordering information

Table 3. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAS21H</td>
<td>-</td>
<td>plastic surface-mounted package; 2 leads</td>
<td>SOD123F</td>
</tr>
</tbody>
</table>

4. Marking

Table 4. Marking codes

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAS21H</td>
<td>B2</td>
</tr>
</tbody>
</table>
5. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{RRM})</td>
<td>repetitive peak reverse voltage</td>
<td>-</td>
<td>250</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_R)</td>
<td>reverse voltage</td>
<td>-</td>
<td>200</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_F)</td>
<td>forward current</td>
<td>([1])</td>
<td>-</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{FRM})</td>
<td>repetitive peak forward current</td>
<td>(t_p = 1 \text{ ms}; \delta = 0.25)</td>
<td>-</td>
<td>625</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{FSM})</td>
<td>non-repetitive peak forward current</td>
<td>square wave ([2])</td>
<td>(t_p = 1 \text{ ms})</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>(t_p = 100 \text{ µs})</td>
<td>-</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>(t_p = 10 \text{ ms})</td>
<td>-</td>
<td>1.7</td>
<td>A</td>
</tr>
<tr>
<td>(P_{tot})</td>
<td>total power dissipation</td>
<td>(T_{amb} \leq 25 \degree C) ([3])</td>
<td>-</td>
<td>375</td>
<td>mW</td>
</tr>
<tr>
<td>(T_j)</td>
<td>junction temperature</td>
<td>-</td>
<td>150</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>(T_{amb})</td>
<td>ambient temperature</td>
<td>-65</td>
<td>+150</td>
<td>\degree C</td>
<td></td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>storage temperature</td>
<td>-65</td>
<td>+150</td>
<td>\degree C</td>
<td></td>
</tr>
</tbody>
</table>

\([1]\) Pulse test: \(t_p \leq 300 \text{ µs}; \delta \leq 0.02 \).
\([2]\) \(T_j = 25 \degree C \) prior to surge.
\([3]\) Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

6. Thermal characteristics

Table 6. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(j-a)})</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air ([1][2])</td>
<td>-</td>
<td>-</td>
<td>330</td>
<td>\degree C/W</td>
</tr>
<tr>
<td>(R_{th(j-sp)})</td>
<td>thermal resistance from junction to solder point</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>\degree C/W</td>
<td></td>
</tr>
</tbody>
</table>

\([1]\) Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
\([2]\) Reflow soldering is the only recommended soldering method.
\([3]\) Soldering point of cathode tab.
7. Characteristics

Table 7. Characteristics

$T_{\text{amb}} = 25^\circ \text{C}$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>$I_F = 100$ mA</td>
<td>[1]</td>
<td>-</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 200$ mA</td>
<td>[1]</td>
<td>-</td>
<td>1.25</td>
<td>V</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>$V_R = 200$ V</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = 200$ V; $T_J = 150^\circ \text{C}$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>C_d</td>
<td>diode capacitance</td>
<td>$V_R = 0$ V; $f = 1$ MHz</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>pF</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>reverse recovery time</td>
<td>$V_R = 0$ V; $f = 1$ MHz</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>ns</td>
</tr>
</tbody>
</table>

[1] Pulse test: $t_p \leq 300 \mu$s; $\delta \leq 0.02$.
[2] When switched from $I_F = 30$ mA to $I_R = 30$ mA; $R_L = 100$ Ω; measured at $I_R = 3$ mA.
Nexperia

BAS21H

Single high-voltage switching diode

Fig 1. Forward current as a function of forward voltage

![Graph](image1)

1. $T_{\text{amb}} = 150 \, ^\circ \text{C}$; typical values
2. $T_{\text{amb}} = 25 \, ^\circ \text{C}$; typical values
3. $T_{\text{amb}} = 25 \, ^\circ \text{C}$; maximum values

Based on square wave currents.

Fig 2. Non-repetitive peak forward current as a function of pulse duration; maximum values

![Graph](image2)

$f = 1 \, \text{MHz}$; $T_{\text{amb}} = 25 \, ^\circ \text{C}$; prior to surge

Fig 3. Reverse current as a function of junction temperature

![Graph](image3)

1. $V_R = V_{R_{\text{lin}}}$; maximum values
2. $V_R = V_{R_{\text{lin}}}$; typical values

Fig 4. Diode capacitance as a function of reverse voltage; typical values

![Graph](image4)

$f = 1 \, \text{MHz}$; $T_{\text{amb}} = 25 \, ^\circ \text{C}$
8. Test information

Fig 5. Reverse recovery time test circuit and waveforms

(1) \(I_R = 3 \text{ mA} \)

9. Package outline

Fig 6. Package outline SOD123F

10. Packing information

Please refer to packing information on www.nexperia.com.
11. Soldering

Reflow soldering is the only recommended soldering method.

Fig 7. Reflow soldering footprint SOD123F

12. Mounting

PCB thickness = 1.6 mm

Fig 8. FR4 PCB, standard footprint SOD123F
13. Revision history

Table 9. Revision history

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAS21H_2</td>
<td>20061103</td>
<td>Product data sheet</td>
<td>-</td>
<td>BAS21H_1</td>
</tr>
</tbody>
</table>

Modifications:

- The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors.
- Legal texts have been adapted to the new company name where appropriate.
- Section 1.1 “General description”: amended
- Table 1 “Quick reference data”: I_F forward current table note added
- Table 5 “Limiting values”: I_F forward current table note added
- Table 5 “Limiting values”: I_{FRM} repetitive peak forward current condition amended
- Table 5 “Limiting values”: I_{FSM} non-repetitive peak forward current condition amended
- Table 6: $R_{th(j-sp)}$ thermal resistance from junction to solder point table note added
- Table 7 “Characteristics”: V_F forward voltage unit amended
- Figure 2: figure title and figure note amended
- Figure 3: amended
- Section 12 “Mounting”: added
- Section 14.4 “Trademarks”: added

BAS21H_1 20050411 Product data sheet - -
14. Legal information

14.1 Data sheet status

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective [short] data sheet</td>
<td>Development</td>
<td>This document contains data from the objective specification for product development.</td>
</tr>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
15. Contents

1 Product profile ... 1
1.1 General description 1
1.2 Features .. 1
1.3 Applications .. 1
1.4 Quick reference data 1
2 Pinning information 2
3 Ordering information 2
4 Marking ... 2
5 Limiting values ... 3
6 Thermal characteristics 3
7 Characteristics ... 4
8 Test information ... 6
9 Package outline ... 6
10 Packing information 6
11 Soldering .. 7
12 Mounting ... 7
13 Revision history .. 8
14 Legal information .. 9
14.1 Data sheet status ... 9
14.2 Definitions ... 9
14.3 Disclaimers .. 9
14.4 Trademarks .. 9
15 Contents ... 10