1. General description

The 74LVCU04A is a hex unbuffered inverter. Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments.

2. Features and benefits

- Wide supply voltage range from 1.2 V to 3.6 V
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>Temperature range</th>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVCU04AD</td>
<td>SO14</td>
<td>-40 °C to +125 °C</td>
<td>plastic small outline package; 14 leads; body width 3.9 mm</td>
<td>SOT108-1</td>
<td></td>
</tr>
<tr>
<td>74LVCU04APW</td>
<td>TSSOP14</td>
<td>-40 °C to +125 °C</td>
<td>plastic thin shrink small outline package; 14 leads; body width 4.4 mm</td>
<td>SOT402-1</td>
<td></td>
</tr>
<tr>
<td>74LVCU04ABQ</td>
<td>DHVQFN14</td>
<td>-40 °C to +125 °C</td>
<td>plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 × 3 × 0.85 mm</td>
<td>SOT762-1</td>
<td></td>
</tr>
</tbody>
</table>
4. Functional diagram

Fig. 1. Logic symbol

Fig. 2. IEC logic symbol

Fig. 3. Schematic diagram for one inverter
5. Pinning information

5.1. Pinning

D package
SOT108-1 (SO14)

PW package
SOT402-1 (TSSOP14)

BQ package
SOT762-1 (DHVQFN14)

(1) This is not a ground pin. There is no electrical or mechanical requirement to solder the pad. In case soldered, the solder land should remain floating or connected to GND.

5.2. Pin description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A, 2A, 3A, 4A, 5A, 6A</td>
<td>1, 3, 5, 9, 11, 13</td>
<td>data input</td>
</tr>
<tr>
<td>1Y, 2Y, 3Y, 4Y, 5Y, 6Y</td>
<td>2, 4, 6, 8, 10, 12</td>
<td>data output</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>ground (0 V)</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>14</td>
<td>supply voltage</td>
</tr>
</tbody>
</table>
6. Functional description

Table 3. Function table

<table>
<thead>
<tr>
<th>Input nA</th>
<th>Output nY</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>supply voltage</td>
<td></td>
<td>-0.5</td>
<td>+6.5</td>
<td>V</td>
</tr>
<tr>
<td>IK</td>
<td>input clamping current</td>
<td>V<sub>i</sub> < 0 V</td>
<td>-50</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>I<sub>f</sub></td>
<td>input voltage</td>
<td></td>
<td>[1]</td>
<td>+6.5</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>OK</sub></td>
<td>output clamping current</td>
<td>V<sub>O</sub> > V<sub>CC</sub> or V<sub>O</sub> < 0 V</td>
<td>-</td>
<td>±50</td>
<td>mA</td>
</tr>
<tr>
<td>V<sub>O</sub></td>
<td>output voltage</td>
<td></td>
<td>[2]</td>
<td>V<sub>CC</sub> + 0.5 V</td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>output current</td>
<td>V<sub>O</sub> = 0 V to V<sub>CC</sub></td>
<td>-</td>
<td>±50</td>
<td>mA</td>
</tr>
<tr>
<td>ICC</td>
<td>supply current</td>
<td></td>
<td>-</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>I<sub>GND</sub></td>
<td>ground current</td>
<td></td>
<td>-100</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>T<sub>stab</sub></td>
<td>storage temperature</td>
<td>T<sub>amb</sub> = -40 °C to +125 °C</td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>P<sub>tot</sub></td>
<td>total power dissipation</td>
<td></td>
<td>-</td>
<td>500</td>
<td>mW</td>
</tr>
</tbody>
</table>

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.
[2] The output voltage ratings may be exceeded if the output current ratings are observed.
[3] For SOT402-1 (TSSOP14) package: P_{tot} derates linearly with 7.3 mW/K above 81 °C.
For SOT762-1 (DHVQFN14) package: P_{tot} derates linearly with 9.6 mW/K above 98 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>supply voltage</td>
<td>functional</td>
<td>1.65</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>f</sub></td>
<td>input voltage</td>
<td></td>
<td>0</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>IO</td>
<td>output voltage</td>
<td></td>
<td>0</td>
<td>-</td>
<td>V<sub>CC</sub></td>
<td>V</td>
</tr>
<tr>
<td>Ta</td>
<td>ambient temperature</td>
<td>in free air</td>
<td>-40</td>
<td>-</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>ΔV/ΔV</td>
<td>input transition rise and fall rate</td>
<td>V<sub>CC</sub> = 1.65 V to 2.7 V</td>
<td>0</td>
<td>-</td>
<td>20</td>
<td>ns/V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.7 V to 3.6 V</td>
<td>0</td>
<td>-</td>
<td>10</td>
<td>ns/V</td>
</tr>
</tbody>
</table>
9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(-40 , ^\circ\text{C} \text{ to } +85 , ^\circ\text{C})</th>
<th>(-40 , ^\circ\text{C} \text{ to } +125 , ^\circ\text{C})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ [1]</td>
<td>Max</td>
</tr>
</tbody>
</table>

HIGH-level input voltage
- \(V_{\text{IH}}\) = 0.5 V; \(I_0 = -100 \, \mu\text{A}\)
- \(V_{\text{CC}} = 1.2 \, \text{V}\)
 - 1.08
 - -
 - 1.12
 - -
 - V
- \(V_{\text{CC}} = 1.65 \text{V to } 1.95 \text{V}\)
 - 1.3
 - -
 - 1.5
 - -
 - V
- \(V_{\text{CC}} = 2.3 \text{V to } 2.7 \text{V}\)
 - 1.8
 - -
 - 2.0
 - -
 - V
- \(V_{\text{CC}} = 3.0 \, \text{V}\)
 - 2.0
 - -
 - 2.4
 - -
 - V
- \(V_{\text{CC}} = 3.6 \, \text{V}\)
 - 2.4
 - -
 - 2.8
 - -
 - V

LOW-level input voltage
- \(V_{\text{IL}} = V_{\text{OH(min)}} = V_{\text{CC}} - 0.5 \, \text{V}; \)
 - \(I_0 = -100 \, \mu\text{A}\)
- \(V_{\text{CC}} = 1.2 \, \text{V}\)
 - -
 - 0.12
 - -
 - 0.1
 - V
- \(V_{\text{CC}} = 1.65 \text{V to } 1.95 \text{V}\)
 - -
 - 0.6
 - -
 - 0.4
 - V
- \(V_{\text{CC}} = 2.3 \text{V to } 2.7 \text{V}\)
 - -
 - 0.6
 - -
 - 0.5
 - V
- \(V_{\text{CC}} = 3.0 \, \text{V}\)
 - -
 - 1.0
 - -
 - 0.6
 - V
- \(V_{\text{CC}} = 3.6 \, \text{V}\)
 - -
 - 1.2
 - -
 - 0.7
 - V

HIGH-level output voltage
- \(V_{\text{OH}} = V_{\text{GND}}\)
- \(V_{\text{CC}} = 3.0 \, \text{V}; \ I_0 = -100 \, \mu\text{A}\)
 - 0.2
 - -
 - -
 - 0.3
 - -
 - V
- \(V_{\text{CC}} = 1.65 \text{V}; \ I_0 = -4 \, \text{mA}\)
 - 1.2
 - -
 - 1.05
 - -
 - V
- \(V_{\text{CC}} = 2.3 \text{V}; \ I_0 = -8 \, \text{mA}\)
 - 1.8
 - -
 - 1.65
 - -
 - V
- \(V_{\text{CC}} = 2.7 \text{V}; \ I_0 = -12 \, \text{mA}\)
 - 2.2
 - -
 - 2.05
 - -
 - V
- \(V_{\text{CC}} = 3.0 \, \text{V}; \ I_0 = -18 \, \text{mA}\)
 - 2.4
 - -
 - 2.25
 - -
 - V
- \(V_{\text{CC}} = 3.6 \, \text{V}; \ I_0 = -24 \, \text{mA}\)
 - 2.2
 - -
 - 2.0
 - -
 - V

LOW-level output voltage
- \(V_{\text{OL}} = V_{\text{CC}}\)
- \(V_{\text{CC}} = 3.0 \, \text{V}; \ I_0 = 100 \, \mu\text{A}\)
 - -
 - 0.20
 - -
 - 0.60
 - V
- \(V_{\text{CC}} = 1.65 \text{V}; \ I_0 = 4 \, \text{mA}\)
 - -
 - 0.45
 - -
 - 0.65
 - V
- \(V_{\text{CC}} = 2.3 \text{V}; \ I_0 = 8 \, \text{mA}\)
 - -
 - 0.60
 - -
 - 0.80
 - V
- \(V_{\text{CC}} = 2.7 \text{V}; \ I_0 = 12 \, \text{mA}\)
 - -
 - 0.40
 - -
 - 0.30
 - V
- \(V_{\text{CC}} = 3.0 \, \text{V}; \ I_0 = 24 \, \text{mA}\)
 - -
 - 0.55
 - -
 - 0.80
 - V

Input leakage current
- \(I_i\) = \(V_{\text{CC}} = 3.6 \, \text{V}; \ V_i = 5.5 \, \text{V or GND}\)
 - -
 - ±0.1
 - ±5
 - -
 - ±20
 - \(\mu\text{A}\)

Supply current
- \(I_{\text{CC}}\)
 - \(V_{\text{CC}} = 3.6 \, \text{V}; \ V_i = V_{\text{CC}} \text{ or GND}; \)
 - \(I_0 = 0 \, \text{A}\)
 - -
 - 0.1
 - 10
 - -
 - 40
 - \(\mu\text{A}\)

Additional supply current
- \(\Delta I_{\text{CC}}\)
 - per input pin:
 - \(V_{\text{CC}} = 2.7 \text{V to } 3.6 \text{V}; \)
 - \(V_i = V_{\text{CC}} - 0.6 \, \text{V}; \ I_0 = 0 \, \text{A}\)
 - -
 - 5
 - 500
 - -
 - 5000
 - \(\mu\text{A}\)

Input capacitance
- \(C_i\)
 - \(V_{\text{CC}} = 0 \, \text{V to } 3.6 \, \text{V}; \)
 - \(V_i = \text{GND to } V_{\text{CC}}\)
 - -
 - 5.5
 - -
 - -
 - \(\text{pF}\)

[1] All typical values are measured at \(V_{\text{CC}} = 3.3 \, \text{V}\) (unless stated otherwise) and \(T_{\text{amb}} = 25 \, ^\circ\text{C}\).
10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Fig. 7.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>-40 °C to +85 °C</th>
<th>-40 °C to +125 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ [1]</td>
</tr>
<tr>
<td>t_{pd}</td>
<td>propagation delay</td>
<td>nA to nY; see Fig. 4 [2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 1.2$ V</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 1.65$ V to 1.95 V</td>
<td>0.3</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 2.3$ V to 2.7 V</td>
<td>0.5</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 2.7$ V</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 3.0$ V to 3.6 V</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>output skew time</td>
<td>$V_{CC} = 3.0$ V to 3.6 V [3]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C_{PD}</td>
<td>power dissipation capacitance</td>
<td>per inverter; $V_{i} = GND$ to V_{CC} [4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 1.65$ V to 1.95 V</td>
<td>-</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 2.3$ V to 2.7 V</td>
<td>-</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 3.0$ V to 3.6 V</td>
<td>-</td>
<td>8.4</td>
</tr>
</tbody>
</table>

[1] Typical values are measured at $T_{amb} = 25$ °C and $V_{CC} = 1.2$ V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.
[2] t_{pd} is the same as t_{PLH} and t_{PHL}.
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
[4] C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW).

$$P_{D} = C_{PD} \times V_{CC}^2 \times f_{i} \times N + \sum(C_{L} \times V_{CC}^2 \times f_{o})$$

where:

- f_{i} = input frequency in MHz
- f_{o} = output frequency in MHz
- C_{L} = output load capacitance in pF
- V_{CC} = supply voltage in Volts
- N = number of inputs switching
- $\sum(C_{L} \times V_{CC}^2 \times f_{o})$ = sum of the outputs

10.1. Waveforms and test circuit

$V_{M} = 1.5$ V at $V_{CC} \geq 2.7$ V;
$V_{M} = 0.5 \times V_{CC}$ at $V_{CC} < 2.7$ V;
V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 4. Input (nA) to output (nY) propagation delays
\[g_{fs} = \frac{dI_O}{dV_I}, \text{ at constant } V_O \]
\[f_i = 1 \text{ kHz at } V_O \text{ is constant} \]

Fig. 5. Test setup for measuring forward transconductance

\[T_{amb} = 25 \, ^\circ\text{C} \]

Fig. 6. Typical forward transconductance as a function of supply voltage

Test data is given in Table 8. Definitions for test circuit:
\[R_L = \text{Load resistance}. \]
\[C_L = \text{Load capacitance including jig and probe capacitance}. \]
\[R_T = \text{Termination resistance should be equal to output impedance } Z_o \text{ of the pulse generator}. \]

Fig. 7. Test circuit for measuring switching times

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Input</th>
<th>(t_r, t_f)</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>(V_I)</td>
<td>(\leq 2 \text{ ns})</td>
<td>(30 \text{ pF})</td>
</tr>
<tr>
<td>(1.2 \text{ V})</td>
<td>(V_{CC})</td>
<td>(\leq 2 \text{ ns})</td>
<td>(30 \text{ pF})</td>
</tr>
<tr>
<td>(1.65 \text{ V to 1.95 V})</td>
<td>(V_{CC})</td>
<td>(\leq 2 \text{ ns})</td>
<td>(30 \text{ pF})</td>
</tr>
<tr>
<td>(2.3 \text{ V to 2.7 V})</td>
<td>(V_{CC})</td>
<td>(\leq 2 \text{ ns})</td>
<td>(30 \text{ pF})</td>
</tr>
<tr>
<td>(2.7 \text{ V})</td>
<td>(2.7 \text{ V})</td>
<td>(\leq 2.5 \text{ ns})</td>
<td>(50 \text{ pF})</td>
</tr>
<tr>
<td>(3.0 \text{ V to 3.6 V})</td>
<td>(2.7 \text{ V})</td>
<td>(\leq 2.5 \text{ ns})</td>
<td>(50 \text{ pF})</td>
</tr>
</tbody>
</table>
11. Application information

Some applications for the 74LVCU04A are:

- Linear amplifier: see Fig. 8
- Crystal oscillator designs: see Fig. 9
- Astable multivibrator: see Fig. 10

![Linear Amplifier Diagram]

\[V_{o(p-p)} = V_{CC} - 1.5 \text{ V centered at } 0.5V_{CC} \]

\[A_u = - \frac{G_{OL}}{1 + \frac{R1}{R2}(1 + G_{OL})} \]

\(G_{OL} \) = loop gain.

\(A_u \) = voltage amplification.

\(R1 \geq 3 \text{ kΩ}, R2 \leq 1 \text{ MΩ} \)

\(Z_L > 10 \text{ kΩ}; A_{OL} = 20 \text{ (typ.)} \)

Typical unity gain bandwidth product is 5 MHz.

Fig. 8. 74LVCU04A used as linear amplifier

![Crystal Oscillator Diagram]

\(R_S \approx 2R \).

The average \(I_{CC} \) is approximately

\[f = \frac{1}{f} \approx \frac{1}{2.2RC} \]

\[R_S = 2R. \]

Fig. 9. 74LVCU04A used as crystal oscillator

![Multivibrator Diagram]

\[f = \frac{1}{f} \approx \frac{1}{3.5 + 0.05 f \text{ (MHz)} \times C \text{ (pF)} [\text{mA}] \text{ at } V_{CC} = 3.0 \text{ V.}} \]

Fig. 10. 74LVCU04A used as astable multivibrator
Fig. 11. Package outline SOT108-1 (SO14)
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

<table>
<thead>
<tr>
<th>Unit</th>
<th>A</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>bₚ</th>
<th>c</th>
<th>D⁽¹⁾</th>
<th>E⁽²⁾</th>
<th>e</th>
<th>Hₑ</th>
<th>L</th>
<th>Lₚ</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>max</td>
<td>1.20</td>
<td>0.15</td>
<td>1.05</td>
<td>0.30</td>
<td>0.2</td>
<td>5.1</td>
<td>4.5</td>
<td>6.6</td>
<td>0.75</td>
<td>1.0</td>
<td>0.45</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>8°</td>
</tr>
<tr>
<td>min</td>
<td>0.05</td>
<td>0.80</td>
<td>0.25</td>
<td>0.09</td>
<td>0.19</td>
<td>0.2</td>
<td>4.9</td>
<td>4.3</td>
<td>6.2</td>
<td>0.45</td>
<td>1.0</td>
<td></td>
<td></td>
<td>0°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

Fig. 12. Package outline SOT402-1 (TSSOP14)
DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;
14 terminals; body 2.5 x 3 x 0.85 mm

Dimensions (mm are the original dimensions)

<table>
<thead>
<tr>
<th>Unit</th>
<th>A(1)</th>
<th>A1</th>
<th>b</th>
<th>c</th>
<th>D(1)</th>
<th>Dh</th>
<th>E(1)</th>
<th>Eh</th>
<th>e</th>
<th>e1</th>
<th>k</th>
<th>L</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>max</td>
<td>1</td>
<td>0.05</td>
<td>0.30</td>
<td>3.1</td>
<td>1.65</td>
<td>2.6</td>
<td>1.15</td>
<td>0.5</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>0.00</td>
<td>0.18</td>
<td>2.9</td>
<td>1.35</td>
<td>2.4</td>
<td>0.85</td>
<td>0.5</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

Fig. 13. Package outline SOT762-1 (DHVQFN14)
13. Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDM</td>
<td>Charged Device Model</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>ESD</td>
<td>ElectroStatic Discharge</td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Model</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-Transistor Logic</td>
</tr>
</tbody>
</table>

14. Revision history

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVCU04A v.11</td>
<td>20240228</td>
<td>Product data sheet</td>
<td>-</td>
<td>74LVCU04A v.10</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fig. 11, Fig. 12: Aligned SO and TSSOP package outline drawings to JEDEC MS-012 and MO-153.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVCU04A v.10</td>
<td>20230830</td>
<td>Product data sheet</td>
<td>-</td>
<td>74LVCU04A v.9</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Section 1 updated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Section 2: ESD specification updated according to the latest JEDEC standard.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVCU04A v.9</td>
<td>20210331</td>
<td>Product data sheet</td>
<td>-</td>
<td>74LVCU04A v.8</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Legal texts have been adapted to the new company name where appropriate.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Type number 74LVCU04ADB (SOT337-1 / SSOP14) removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Section 1 updated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Section 7: Derating values for P\text{tot} total power dissipation updated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVCU04A v.8</td>
<td>20151218</td>
<td>Product data sheet</td>
<td>-</td>
<td>74LVCU04A v.7</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Descriptive title updated. Added "unbuffered" (errata).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVCU04A v.7</td>
<td>20111117</td>
<td>Product data sheet</td>
<td>-</td>
<td>74LVCU04A v.6</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Legal pages updated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Table 6: bodyrow ΔI\text{CC}: condition V\text{CC} changed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVCU04A v.6</td>
<td>20110809</td>
<td>Product data sheet</td>
<td>-</td>
<td>74LVCU04A v.5</td>
</tr>
<tr>
<td>74LVCU04A v.5</td>
<td>20040312</td>
<td>Product specification</td>
<td>-</td>
<td>74LVCU04A v.4</td>
</tr>
<tr>
<td>74LVCU04A v.4</td>
<td>20030901</td>
<td>Product specification</td>
<td>-</td>
<td>74LVCU04A v.3</td>
</tr>
<tr>
<td>74LVCU04A v.3</td>
<td>19980729</td>
<td>Product specification</td>
<td>-</td>
<td>74LVCU04A v.2</td>
</tr>
<tr>
<td>74LVCU04A v.2</td>
<td>19980729</td>
<td>Product specification</td>
<td>-</td>
<td>74LVCU04A v.1</td>
</tr>
<tr>
<td>74LVCU04A v.1</td>
<td>19980729</td>
<td>Product specification</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
15. Legal information

Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1][2]</td>
<td>Development</td>
<td>This document contains data from the prospective specification for product development.</td>
</tr>
<tr>
<td>Preliminary data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term "short data sheet" is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type (s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable, and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any and all liability in this respect.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any and all liability in this respect.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.