1. General description

The 74LVC2G241 is a dual non-inverting buffer/line driver with 3-state outputs. The 3-state outputs are controlled by the output enable inputs 1OE and 2OE:

- A HIGH level at pin 1OE causes output 1Y to assume a high-impedance OFF-state.
- A LOW level at pin 2OE causes output 2Y to assume a high-impedance OFF-state.

Schmitt trigger action at all inputs makes the circuit highly tolerant of slower input rise and fall times.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of the 74LVC2G241 as a translator in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using $I_{	ext{OFF}}$. The $I_{	ext{OFF}}$ circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- ±24 mA output drive ($V_{CC} = 3.0$ V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C
3. Ordering information

Table 1. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>Temperature range</th>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVC2G241DP</td>
<td>TSSOP8</td>
<td>-40 °C to +125 °C</td>
<td>plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241DC</td>
<td>VSSOP8</td>
<td>-40 °C to +125 °C</td>
<td>plastic very thin shrink small outline package; 8 leads; body width 2.3 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241GT</td>
<td>XSON8</td>
<td>-40 °C to +125 °C</td>
<td>plastic extremely thin small outline package; no leads; 8 terminals; body 1 × 1.95 × 0.5 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241GF</td>
<td>XSON8</td>
<td>-40 °C to +125 °C</td>
<td>extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1 × 0.5 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241GN</td>
<td>XSON8</td>
<td>-40 °C to +125 °C</td>
<td>extremely thin small outline package; no leads; 8 terminals; body 1.2 × 1.0 × 0.35 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241GS</td>
<td>XSON8</td>
<td>-40 °C to +125 °C</td>
<td>extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1.0 × 0.35 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Marking

Table 2. Marking codes

<table>
<thead>
<tr>
<th>Type number</th>
<th>Marking code[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVC2G241DP</td>
<td>V241</td>
</tr>
<tr>
<td>74LVC2G241DC</td>
<td>V41</td>
</tr>
<tr>
<td>74LVC2G241GT</td>
<td>V41</td>
</tr>
<tr>
<td>74LVC2G241GF</td>
<td>V1</td>
</tr>
<tr>
<td>74LVC2G241GN</td>
<td>V1</td>
</tr>
<tr>
<td>74LVC2G241GS</td>
<td>V1</td>
</tr>
</tbody>
</table>

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

Fig. 1. Logic symbol

Fig. 2. IEC logic symbol
6. Pinning information

6.1. Pinning

Fig. 3. Pin configuration SOT1089 (XSON8)

DP package SOT505-2 (TSSOP8)

DC package SOT765-1 (VSSOP8)

GT package SOT833-1 (XSON8)

GN package SOT1116 (XSON8)

GS package SOT1203 (XSON8)
6.2. Pin description

Table 3. Pin description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OE</td>
<td>1</td>
<td>output enable input (active LOW)</td>
</tr>
<tr>
<td>1A, 2A</td>
<td>2, 5</td>
<td>data input</td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td>ground (0 V)</td>
</tr>
<tr>
<td>1Y, 2Y</td>
<td>6, 3</td>
<td>data output</td>
</tr>
<tr>
<td>2OE</td>
<td>7</td>
<td>output enable input (active HIGH)</td>
</tr>
<tr>
<td>VCC</td>
<td>8</td>
<td>supply voltage</td>
</tr>
</tbody>
</table>

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

<table>
<thead>
<tr>
<th>Input</th>
<th>1OE</th>
<th>1A</th>
<th>2OE</th>
<th>2A</th>
<th>1Y</th>
<th>2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
<td>L</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
</tbody>
</table>

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>supply voltage</td>
<td></td>
<td>-0.5</td>
<td>+6.5</td>
<td>V</td>
</tr>
<tr>
<td>I_K</td>
<td>input clamping current</td>
<td>V_i < 0 V</td>
<td>-50</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>V_i</td>
<td>input voltage</td>
<td></td>
<td>-0.5</td>
<td>+6.5</td>
<td>V</td>
</tr>
<tr>
<td>I_OK</td>
<td>output clamping current</td>
<td>V_o > V_CC or V_o < 0 V</td>
<td>-</td>
<td>±50</td>
<td>mA</td>
</tr>
<tr>
<td>V_o</td>
<td>output voltage</td>
<td>enable mode</td>
<td>[1]</td>
<td>-0.5</td>
<td>V_CC + 0.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disable mode</td>
<td>[1]</td>
<td>-0.5</td>
<td>+6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_CC = 0 V; Power-down mode</td>
<td>[1]</td>
<td>-0.5</td>
<td>+6.5</td>
</tr>
<tr>
<td>I_O</td>
<td>output current</td>
<td>V_o = 0 V to V_CC</td>
<td>-</td>
<td>±50</td>
<td>mA</td>
</tr>
<tr>
<td>I_CC</td>
<td>supply current</td>
<td></td>
<td>-</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>I_GND</td>
<td>ground current</td>
<td></td>
<td>-100</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>T_stg</td>
<td>storage temperature</td>
<td></td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>P_tout</td>
<td>total power dissipation</td>
<td>T_amb = -40 °C to +125 °C</td>
<td>[2]</td>
<td>-</td>
<td>250</td>
</tr>
</tbody>
</table>

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT505-2 (TSSOP8) package: P_tout derates linearly with 4.6 mW/K above 96 °C.
For SOT765-1 (VSSOP8) package: P_tout derates linearly with 4.9 mW/K above 99 °C.
For SOT833-1 (XSON8) package: P_tout derates linearly with 3.1 mW/K above 68 °C.
For SOT1089 (XSON8) package: P_tout derates linearly with 4.0 mW/K above 88 °C.
For SOT1116 (XSON8) package: P_tout derates linearly with 4.2 mW/K above 90 °C.
For SOT1203 (XSON8) package: P_tout derates linearly with 3.6 mW/K above 81 °C.
9. Recommended operating conditions

Table 6. Operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>CC</sub></td>
<td>supply voltage</td>
<td></td>
<td>1.65</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>I</sub></td>
<td>input voltage</td>
<td>V<sub>CC</sub> = 1.65 V to 5.5 V; enable mode</td>
<td>0</td>
<td>V<sub>CC</sub></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 1.65 V to 5.5 V; disable mode</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 0 V; Power-down mode</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>O</sub></td>
<td>output voltage</td>
<td></td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T<sub>amb</sub></td>
<td>ambient temperature</td>
<td></td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Δt/ΔV</td>
<td>input transition rise and fall rate</td>
<td>V<sub>CC</sub> = 1.65 V to 2.7 V</td>
<td>-</td>
<td>20</td>
<td>ns/V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.7 V to 5.5 V</td>
<td>-</td>
<td>10</td>
<td>ns/V</td>
</tr>
</tbody>
</table>

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ[1]</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>IH</sub></td>
<td>HIGH-level input voltage</td>
<td>V<sub>CC</sub> = 1.65 V to 1.95 V</td>
<td>0.65 × V<sub>CC</sub></td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.3 V to 2.7 V</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.7 V to 3.6 V</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V to 5.5 V</td>
<td>0.7 × V<sub>CC</sub></td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>IL</sub></td>
<td>LOW-level input voltage</td>
<td>V<sub>CC</sub> = 1.65 V to 1.95 V</td>
<td>-</td>
<td>-</td>
<td>0.35 × V<sub>CC</sub></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.3 V to 2.7 V</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 2.7 V to 3.6 V</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>CC</sub> = 4.5 V to 5.5 V</td>
<td>-</td>
<td>-</td>
<td>0.3 × V<sub>CC</sub></td>
<td>V</td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>LOW-level output voltage</td>
<td>V<sub>O</sub> = V<sub>IH</sub> or V<sub>IL</sub></td>
<td>I<sub>O</sub> = 100 μA; V<sub>CC</sub> = 1.65 V to 5.5 V</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = 4 mA; V<sub>CC</sub> = 1.65 V</td>
<td>-</td>
<td>-</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = 8 mA; V<sub>CC</sub> = 2.3 V</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = 12 mA; V<sub>CC</sub> = 2.7 V</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = 24 mA; V<sub>CC</sub> = 3.0 V</td>
<td>-</td>
<td>-</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = 32 mA; V<sub>CC</sub> = 4.5 V</td>
<td>-</td>
<td>-</td>
<td>0.55</td>
</tr>
<tr>
<td>V<sub>OH</sub></td>
<td>HIGH-level output voltage</td>
<td>V<sub>I</sub> = V<sub>IH</sub> or V<sub>IL</sub></td>
<td>I<sub>O</sub> = -100 μA; V<sub>CC</sub> = 1.65 V to 5.5 V</td>
<td>V<sub>CC</sub> - 0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = -4 mA; V<sub>CC</sub> = 1.65 V</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = -8 mA; V<sub>CC</sub> = 2.3 V</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = -12 mA; V<sub>CC</sub> = 2.7 V</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = -24 mA; V<sub>CC</sub> = 3.0 V</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sub>O</sub> = -32 mA; V<sub>CC</sub> = 4.5 V</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I<sub>I</sub></td>
<td>input leakage current</td>
<td>V<sub>I</sub> = 5.5 V or GND; V<sub>CC</sub> = 0 V to 5.5 V</td>
<td>-</td>
<td>±0.1</td>
<td>±1</td>
<td>μA</td>
</tr>
<tr>
<td>I<sub>0Z</sub></td>
<td>OFF-state output current</td>
<td>V<sub>O</sub> = V<sub>IH</sub> or V<sub>IL</sub>; V<sub>CC</sub> = 5.5 V or GND; V<sub>CC</sub> = 3.6 V</td>
<td>-</td>
<td>±0.1</td>
<td>±2</td>
<td>μA</td>
</tr>
<tr>
<td>I<sub>OFF</sub></td>
<td>power-off leakage current</td>
<td>V<sub>O</sub> = 5.5 V; V<sub>CC</sub> = 0 V</td>
<td>-</td>
<td>±0.1</td>
<td>±2</td>
<td>μA</td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Conditions</td>
<td>Min</td>
<td>Typ[1]</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>---</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>supply current</td>
<td>$V_I = 5.5,\text{V or GND; } I_O = 0,\text{A;}$</td>
<td>-</td>
<td>0.1</td>
<td>4</td>
<td>μA</td>
</tr>
<tr>
<td>V_{CC}</td>
<td></td>
<td>$V_{CC} = 1.65,\text{V to 5.5,V}$</td>
<td>-</td>
<td>0.1</td>
<td>4</td>
<td>μA</td>
</tr>
<tr>
<td>ΔI_{CC}</td>
<td>additional supply current</td>
<td>per pin; $V_I = V_{CC} - 0.6,\text{V;} I_O = 0,\text{A;}$</td>
<td>-</td>
<td>5</td>
<td>500</td>
<td>μA</td>
</tr>
<tr>
<td>C_I</td>
<td>input capacitance</td>
<td></td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

$T_{amb} = -40\,^\circ\text{C to } +125\,^\circ\text{C}$

V_{IH}	HIGH-level input voltage	$V_{CC} = 1.65\,\text{V to 1.95\,V}$	0.65×V_{CC}	-	-	V
		$V_{CC} = 2.3\,\text{V to 2.7\,V}$	-	1.7	-	V
		$V_{CC} = 2.7\,\text{V to 3.6\,V}$	-	2.0	-	V
		$V_{CC} = 4.5\,\text{V to 5.5\,V}$	-	0.7×V_{CC}	-	V

V_{IL}	LOW-level input voltage	$V_{CC} = 1.65\,\text{V to 1.95\,V}$	-	-	0.35×V_{CC}	V
		$V_{CC} = 2.3\,\text{V to 2.7\,V}$	-	-	0.7	V
		$V_{CC} = 2.7\,\text{V to 3.6\,V}$	-	-	0.8	V
		$V_{CC} = 4.5\,\text{V to 5.5\,V}$	-	-	0.3×V_{CC}	V

V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}	$I_O = 100\,\mu\text{A;} V_{CC} = 1.65\,\text{V to 5.5\,V}$	-	-	0.1	V
		$I_O = 4\,\text{mA;} V_{CC} = 1.65\,\text{V}$	-	-	0.70	V	
		$I_O = 8\,\text{mA;} V_{CC} = 2.3\,\text{V}$	-	-	0.45	V	
		$I_O = 12\,\text{mA;} V_{CC} = 2.7\,\text{V}$	-	-	0.60	V	
		$I_O = 24\,\text{mA;} V_{CC} = 3.0\,\text{V}$	-	-	0.80	V	
		$I_O = 32\,\text{mA;} V_{CC} = 4.5\,\text{V}$	-	-	0.80	V	

V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}	$I_O = -100\,\mu\text{A;} V_{CC} = 1.65\,\text{V to 5.5\,V}$	$V_{CC} - 0.1$	-	-	V
		$I_O = -4\,\text{mA;} V_{CC} = 1.65\,\text{V}$	0.95	-	-	V	
		$I_O = -8\,\text{mA;} V_{CC} = 2.3\,\text{V}$	1.7	-	-	V	
		$I_O = -12\,\text{mA;} V_{CC} = 2.7\,\text{V}$	1.9	-	-	V	
		$I_O = -24\,\text{mA;} V_{CC} = 3.0\,\text{V}$	2.0	-	-	V	
		$I_O = -32\,\text{mA;} V_{CC} = 4.5\,\text{V}$	3.4	-	-	V	
I_I	input leakage current	$V_I = 5.5\,\text{V or GND;} V_{CC} = 0\,\text{V to 5.5\,V}$	-	-	±1	μA	
I_{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL}; $V_O = 5.5\,\text{V or GND;} V_{CC} = 3.8\,\text{V}$	-	-	±2	μA	
I_{OFF}	power-off leakage current	V_I or $V_O = 5.5\,\text{V;} V_{CC} = 0\,\text{V}$	-	-	±2	μA	
I_{CC}	supply current	$V_I = 5.5\,\text{V or GND;} I_O = 0\,\text{A;} V_{CC} = 1.65\,\text{V to 5.5\,V}$	-	-	4	μA	
ΔI_{CC}	additional supply current	per pin; $V_I = V_{CC} - 0.6\,\text{V;} I_O = 0\,\text{A;} V_{CC} = 2.3\,\text{V to 5.5\,V}$	-	-	500	μA	

[1] Typical values are measured at $V_{CC} = 3.3\,\text{V}$ and $T_{amb} = 25\,^\circ\text{C}$.
11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>-40 °C to +85 °C</th>
<th>-40 °C to +125 °C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ[1]</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td></td>
<td>Max</td>
</tr>
<tr>
<td>(t_{pd})</td>
<td>propagation delay</td>
<td>nA to nY; see Fig. 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.65 \text{ V}) to 1.95 \text{ V}</td>
<td>1.0</td>
<td>4.5</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3 \text{ V}) to 2.7 \text{ V}</td>
<td>0.5</td>
<td>2.8</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7 \text{ V})</td>
<td>1.0</td>
<td>2.8</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3.0 \text{ V}) to 3.6 \text{ V}</td>
<td>0.5</td>
<td>2.6</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V}) to 5.5 \text{ V}</td>
<td>0.5</td>
<td>2.1</td>
<td>3.7</td>
</tr>
<tr>
<td>(t_{en})</td>
<td>enable time</td>
<td>(\uparrow \text{OE to } 1\text{Y};) see Fig. 5</td>
<td>[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.65 \text{ V}) to 1.95 \text{ V}</td>
<td>1.5</td>
<td>5.2</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3 \text{ V}) to 2.7 \text{ V}</td>
<td>1.0</td>
<td>3.1</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7 \text{ V})</td>
<td>1.5</td>
<td>3.2</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3.0 \text{ V}) to 3.6 \text{ V}</td>
<td>0.5</td>
<td>2.7</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V}) to 5.5 \text{ V}</td>
<td>0.5</td>
<td>2.0</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2\text{OE to } 2\text{Y};) see Fig. 6</td>
<td>[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.65 \text{ V}) to 1.95 \text{ V}</td>
<td>1.0</td>
<td>4.3</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3 \text{ V}) to 2.7 \text{ V}</td>
<td>1.0</td>
<td>2.7</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7 \text{ V})</td>
<td>1.0</td>
<td>2.7</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3.0 \text{ V}) to 3.6 \text{ V}</td>
<td>1.0</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V}) to 5.5 \text{ V}</td>
<td>0.5</td>
<td>1.9</td>
<td>3.3</td>
</tr>
<tr>
<td>(t_{ds})</td>
<td>disable time</td>
<td>(\uparrow \text{OE to } 1\text{Y};) see Fig. 5</td>
<td>[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.65 \text{ V}) to 1.95 \text{ V}</td>
<td>1.0</td>
<td>3.2</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3 \text{ V}) to 2.7 \text{ V}</td>
<td>0.5</td>
<td>2.2</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7 \text{ V})</td>
<td>1.0</td>
<td>2.8</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3.0 \text{ V}) to 3.6 \text{ V}</td>
<td>1.0</td>
<td>2.6</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V}) to 5.5 \text{ V}</td>
<td>0.5</td>
<td>2.0</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2\text{OE to } 2\text{Y};) see Fig. 6</td>
<td>[2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 1.65 \text{ V}) to 1.95 \text{ V}</td>
<td>1.0</td>
<td>3.6</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3 \text{ V}) to 2.7 \text{ V}</td>
<td>0.5</td>
<td>2.0</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7 \text{ V})</td>
<td>1.5</td>
<td>3.2</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3.0 \text{ V}) to 3.6 \text{ V}</td>
<td>1.0</td>
<td>2.8</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 4.5 \text{ V}) to 5.5 \text{ V}</td>
<td>0.5</td>
<td>2.0</td>
<td>3.3</td>
</tr>
<tr>
<td>(C_{PD})</td>
<td>power dissipation capacitance</td>
<td>per buffer; (V_{I} = \text{GND to } V_{CC})</td>
<td>[3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>output enabled</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output disabled</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

[1] Typical values are measured at nominal \(V_{CC} \) and at \(T_{SSK} = 25 \text{ °C} \).

[2] \(t_{pd} \) is the same as \(t_{PLH} \) and \(t_{PLH} \); \(t_{en} \) is the same as \(t_{PZL} \) and \(t_{PZL} \); \(t_{ds} \) is the same as \(t_{PLZ} \) and \(t_{PLZ} \).

[3] \(C_{PD} \) is used to determine the dynamic power dissipation (\(P_{D} \) in \(\mu \text{W} \)).

\[P_{D} = C_{PD} \times V_{CC}^{2} \times f_{I} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{D}) \]

where:

- \(f_{I} \) is input frequency in \(\text{MHz} \);
- \(f_{D} \) is output frequency in \(\text{MHz} \);
- \(C_{L} \) is output load capacitance in \(\text{pF} \);
- \(V_{CC} \) is supply voltage in \(\text{V} \);
- \(N \) is number of inputs switching;
- \(\Sigma(C_{L} \times V_{CC}^{2} \times f_{D}) \) is sum of outputs.
11.1. Waveforms and test circuit

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 4. The data input (nA) to output (nY) propagation delays

Table 9. Measurement points

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>V_{M}</td>
<td>V_{M}</td>
</tr>
<tr>
<td>1.65 V to 1.95 V</td>
<td>0.5 × V_{CC}</td>
<td>0.5 × V_{CC}</td>
</tr>
<tr>
<td>2.3 V to 2.7 V</td>
<td>0.5 × V_{CC}</td>
<td>0.5 × V_{CC}</td>
</tr>
<tr>
<td>2.7 V</td>
<td>1.5 V</td>
<td>1.5 V</td>
</tr>
<tr>
<td>3.0 V to 3.6 V</td>
<td>1.5 V</td>
<td>1.5 V</td>
</tr>
<tr>
<td>4.5 V to 5.5 V</td>
<td>0.5 × V_{CC}</td>
<td>0.5 × V_{CC}</td>
</tr>
</tbody>
</table>

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 5. Enable and disable times for input 1OE
Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 6. Enable and disable times for input 2OE

Test data is given in Table 10.
Definitions for test circuit:
$R_T =$ Termination resistance should be equal to output impedance Z_o of the pulse generator;
$C_L =$ Load capacitance including jig and probe capacitance; $R_L =$ Load resistance.

Fig. 7. Test circuit for measuring switching times

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Input V_i</th>
<th>Load C_L</th>
<th>R_L</th>
<th>t_{PLH}, t_{PHL}</th>
<th>t_{PZH}, t_{PHZ}</th>
<th>t_{PZL}, t_{PLZ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65 V to 1.95 V</td>
<td>V_{CC}</td>
<td>30 pF</td>
<td>1 kΩ</td>
<td>open</td>
<td>GND</td>
<td>$2 \times V_{CC}$</td>
</tr>
<tr>
<td>2.3 V to 2.7 V</td>
<td>V_{CC}</td>
<td>30 pF</td>
<td>500 Ω</td>
<td>open</td>
<td>GND</td>
<td>$2 \times V_{CC}$</td>
</tr>
<tr>
<td>2.7 V</td>
<td>2.7 V</td>
<td>50 pF</td>
<td>500 Ω</td>
<td>open</td>
<td>GND</td>
<td>6 V</td>
</tr>
<tr>
<td>3.0 V to 3.6 V</td>
<td>2.7 V</td>
<td>50 pF</td>
<td>500 Ω</td>
<td>open</td>
<td>GND</td>
<td>6 V</td>
</tr>
<tr>
<td>4.5 V to 5.5 V</td>
<td>V_{CC}</td>
<td>50 pF</td>
<td>500 Ω</td>
<td>open</td>
<td>GND</td>
<td>$2 \times V_{CC}$</td>
</tr>
</tbody>
</table>
12. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

Fig. 8. Package outline SOT505-2 (TSSOP8)
Fig. 9. Package outline SOT765-1 (VSSOP8)
XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 1 x 1.95 x 0.5 mm

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max</th>
<th>A1 max</th>
<th>b</th>
<th>D</th>
<th>E</th>
<th>e1</th>
<th>L</th>
<th>L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>0.5</td>
<td>0.04</td>
<td>0.25</td>
<td>2.0</td>
<td>1.05</td>
<td>0.65</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>1.9</td>
<td>0.95</td>
<td>0.5</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Including plating thickness.
2. Can be visible in some manufacturing processes.

Fig. 10. Package outline SOT833-1 (XSON8)
XSON8: extremely thin small outline package; no leads;
8 terminals; body 1.35 x 1 x 0.5 mm

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Unit</th>
<th>A<sup>(1)</sup></th>
<th>A<sub>1</sub></th>
<th>b</th>
<th>D</th>
<th>E</th>
<th>e</th>
<th>L</th>
<th>L<sub>1</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>0.5</td>
<td>0.04</td>
<td>0.20</td>
<td>1.40</td>
<td>1.05</td>
<td>0.35</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nom</td>
<td>0.15</td>
<td>1.35</td>
<td>1.00</td>
<td>0.55</td>
<td>0.36</td>
<td>0.30</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>0.12</td>
<td>1.30</td>
<td>0.95</td>
<td></td>
<td>0.27</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
1. Including plating thickness.
2. Visible depending upon used manufacturing technology.

Fig. 11. Package outline SOT1089 (XSON8)
XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.2 x 1.0 x 0.35 mm

Dimensions

<table>
<thead>
<tr>
<th>Unit</th>
<th>A(1)</th>
<th>A₁</th>
<th>b</th>
<th>D</th>
<th>E</th>
<th>e₁</th>
<th>L</th>
<th>L₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>0.35</td>
<td>0.04</td>
<td>0.20</td>
<td>1.25</td>
<td>1.05</td>
<td>0.35</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>mm nom</td>
<td>0.15</td>
<td>1.20</td>
<td>1.00</td>
<td>0.55</td>
<td>0.30</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>0.12</td>
<td>1.15</td>
<td>0.95</td>
<td>0.27</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
1. Including plating thickness.
2. Visible depending upon used manufacturing technology.

Fig. 12. Package outline SOT1116 (XSON8)
XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1.0 x 0.35 mm

Fig. 13. Package outline SOT1203 (XSON8)
13. Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDM</td>
<td>Charged Device Model</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>ESD</td>
<td>ElectroStatic Discharge</td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Model</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-Transistor Logic</td>
</tr>
</tbody>
</table>

14. Revision history

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LVC2G241 v.17</td>
<td>20230821</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.16</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Section 2: ESD specification updated in accordance to the latest Jedec standard.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241 v.16</td>
<td>20190731</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.15</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Type number 74LVC2G241GM (SOT902-2/XQFN8) removed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Table 5: Derating values for P_{tot} total power dissipation updated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241 v.15</td>
<td>20181122</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.14</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Legal texts have been adapted to the new company name where appropriate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Type numbers 74LVC2G241GD (SOT996-2/XSON8) removed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241 v.14</td>
<td>20161215</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.13</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Table 7: The maximum limits for leakage current and supply current have changed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241 v.13</td>
<td>20130408</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.12</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For type number 74LVC2G241GD XSON8U has changed to XSON8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241 v.12</td>
<td>20120622</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.11</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For type number 74LVC2G241GM the SOT code has changed to SOT902-2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241 v.11</td>
<td>20111129</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.10</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Legal pages updated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LVC2G241 v.10</td>
<td>20100006</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.9</td>
</tr>
<tr>
<td>74LVC2G241 v.9</td>
<td>20080610</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.8</td>
</tr>
<tr>
<td>74LVC2G241 v.8</td>
<td>20080312</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.7</td>
</tr>
<tr>
<td>74LVC2G241 v.7</td>
<td>20071005</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.6</td>
</tr>
<tr>
<td>74LVC2G241 v.6</td>
<td>20060922</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.5</td>
</tr>
<tr>
<td>74LVC2G241 v.5</td>
<td>20050202</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.4</td>
</tr>
<tr>
<td>74LVC2G241 v.4</td>
<td>20040922</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.3</td>
</tr>
<tr>
<td>74LVC2G241 v.3</td>
<td>20030311</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.2</td>
</tr>
<tr>
<td>74LVC2G241 v.2</td>
<td>20030129</td>
<td>Product data sheet</td>
<td></td>
<td>74LVC2G241 v.1</td>
</tr>
<tr>
<td>74LVC2G241 v.1</td>
<td>20021030</td>
<td>Product data sheet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All information provided in this document is subject to legal disclaimers.
© Nexperia B.V. 2023. All rights reserved
15. Legal information

Data sheet status

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective [short] data sheet</td>
<td>Development</td>
<td>This document contains data from the objective specification for product development.</td>
</tr>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before starting or completing a design. [2] The term "short data sheet" is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type name(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia’s standard warranty and Nexperia’s product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVC2G241

All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2023. All rights reserved
Contents

1. General description .. 1
2. Features and benefits .. 1
3. Ordering information.. 2
4. Marking ... 2
5. Functional diagram... 2
6. Pinning information... 3
 6.1. Pinning... 3
 6.2. Pin description... 4
7. Functional description .. 4
8. Limiting values... 4
9. Recommended operating conditions.......................... 5
10. Static characteristics.. 5
11. Dynamic characteristics.. 7
11.1. Waveforms and test circuit .. 8
12. Package outline.. 10
13. Abbreviations.. 16
14. Revision history... 16
15. Legal information... 17