1. General description

The 74HC253; 74HCT253 is a dual 4-bit multiplexer, each with four binary inputs (nI0 to nI3), an output enable input (nOE) and shared select inputs (S0 and S1). One of the four binary inputs is selected by the select inputs and routed to the output nY. A HIGH on nOE causes the outputs to assume a high-impedance OFF-state. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC.

2. Features and benefits

- Non-inverting data path
- 3-state outputs interface directly with system bus
- Complies with JEDEC standard no. 7A
- Common select inputs
- Separate output enable inputs
- Input levels:
 - For 74HC253: CMOS level
 - For 74HCT253: TTL level
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from −40 °C to +85 °C and from −40 °C to +125 °C

3. Applications

- Data selectors
- Data multiplexers
4. Ordering information

Table 1. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package</th>
<th>Temperature range</th>
<th>Name</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC253D</td>
<td>SO16</td>
<td>–40 °C to +125 °C</td>
<td>74HC253</td>
<td>plastic small outline package; 16 leads; body width 3.9 mm</td>
<td>SOT109-1</td>
</tr>
<tr>
<td>74HCT253D</td>
<td>SSOP16</td>
<td>–40 °C to +125 °C</td>
<td>74HCT253</td>
<td>plastic shrink small outline package; 16 leads; body width 5.3 mm</td>
<td>SOT338-1</td>
</tr>
</tbody>
</table>

5. Functional diagram

Fig 1. Logic symbol

Fig 2. Functional diagram
6. Pinning information

6.1 Pinning

Fig 3. Logic diagram

Fig 4. Pin configuration SO16

Fig 5. Pin configuration SSOP16
6.2 Pin description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OE, 2OE</td>
<td>1, 15</td>
<td>output enable inputs (active LOW)</td>
</tr>
<tr>
<td>S0, S1</td>
<td>14, 2</td>
<td>data select inputs</td>
</tr>
<tr>
<td>1I0, 1I1, 1I2, 1I3</td>
<td>6, 5, 4, 3</td>
<td>data inputs source 1</td>
</tr>
<tr>
<td>1Y</td>
<td>7</td>
<td>multiplexer output source 1</td>
</tr>
<tr>
<td>GND</td>
<td>8</td>
<td>ground (0 V)</td>
</tr>
<tr>
<td>2I0, 2I1, 2I2, 2I3</td>
<td>10, 11, 12, 13</td>
<td>data inputs source 2</td>
</tr>
<tr>
<td>VCC</td>
<td>16</td>
<td>supply voltage</td>
</tr>
</tbody>
</table>

7. Functional description

Table 3. Function table[1]

<table>
<thead>
<tr>
<th>select inputs</th>
<th>data inputs</th>
<th>output enable</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S1</td>
<td>nI0</td>
<td>nI1</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>X</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

[1] H = HIGH voltage level; L = LOW voltage level; X = don’t care; Z = high-impedance OFF-state.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>supply voltage</td>
<td>-0.5</td>
<td>+7.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IiK</td>
<td>input clamping current</td>
<td>$V_i < -0.5 , \text{V}$ or $V_i > V_{CC} + 0.5 , \text{V}$</td>
<td>$-, \text{I}^1$</td>
<td>± 20</td>
<td>mA</td>
</tr>
<tr>
<td>IOK</td>
<td>output clamping current</td>
<td>$V_O < -0.5 , \text{V}$ or $V_O > V_{CC} + 0.5 , \text{V}$</td>
<td>I^1</td>
<td>± 50</td>
<td>mA</td>
</tr>
<tr>
<td>IO</td>
<td>output current</td>
<td>$-0.5 , \text{V} < V_O < V_{CC} + 0.5 , \text{V}$</td>
<td>-</td>
<td>± 35</td>
<td>mA</td>
</tr>
<tr>
<td>ICC</td>
<td>supply current</td>
<td>-</td>
<td>70</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IGND</td>
<td>ground current</td>
<td>-70</td>
<td>-</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Tstg</td>
<td>storage temperature</td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Limiting values...continued
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total power dissipation</td>
<td>(T_{\text{amb}} = -40 , ^{\circ}\text{C}) to +125 (^{\circ}\text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO16 package</td>
<td>[2]</td>
<td>-500</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSOP16 package</td>
<td>[3]</td>
<td>-500</td>
<td>mW</td>
<td></td>
</tr>
</tbody>
</table>

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] \(P_{\text{tot}} \) derates linearly with 8 mW/K above 70 \(^{\circ}\text{C} \).

[3] \(P_{\text{tot}} \) derates linearly with 5.5 mW/K above 60 \(^{\circ}\text{C} \).

9. Recommended operating conditions

Table 5. Recommended operating conditions
Voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>74HC253</th>
<th>74HCT253</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>(V_{\text{CC}})</td>
<td>supply voltage</td>
<td></td>
<td>2.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>(V_{\text{I}})</td>
<td>input voltage</td>
<td>(V_{\text{CC}})</td>
<td>0</td>
<td>-</td>
<td>(V_{\text{CC}})</td>
</tr>
<tr>
<td>(V_{\text{O}})</td>
<td>output voltage</td>
<td>(V_{\text{CC}})</td>
<td>0</td>
<td>-</td>
<td>(V_{\text{CC}})</td>
</tr>
<tr>
<td>(T_{\text{amb}})</td>
<td>ambient temperature</td>
<td></td>
<td>-40</td>
<td>-</td>
<td>+125</td>
</tr>
<tr>
<td>(\Delta t/\Delta V)</td>
<td>input transition rise and fall rate</td>
<td>(V_{\text{CC}} = 2.0 , V)</td>
<td>-</td>
<td>-</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{CC}} = 4.5 , V)</td>
<td>-</td>
<td>1.67</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{CC}} = 6.0 , V)</td>
<td>-</td>
<td>-</td>
<td>83</td>
</tr>
</tbody>
</table>

10. Static characteristics

Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>25 (^{\circ}\text{C})</th>
<th>-40 (^{\circ}\text{C}) to +85 (^{\circ}\text{C})</th>
<th>-40 (^{\circ}\text{C}) to +125 (^{\circ}\text{C})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
</tbody>
</table>

74HC253

\(V_{\text{IH}} \)	HIGH-level input voltage	\(V_{\text{CC}} = 2.0 \, V \)	1.5	1.2	-	1.5	-	-	V
		\(V_{\text{CC}} = 4.5 \, V \)	3.15	2.4	-	3.15	-	-	V
		\(V_{\text{CC}} = 6.0 \, V \)	4.2	3.2	-	4.2	-	-	V
\(V_{\text{IL}} \)	LOW-level input voltage	\(V_{\text{CC}} = 2.0 \, V \)	-	0.8	0.5	-	0.5	-	V
		\(V_{\text{CC}} = 4.5 \, V \)	-	2.1	1.35	-	1.35	-	V
		\(V_{\text{CC}} = 6.0 \, V \)	-	2.8	1.8	-	1.8	-	V
\(V_{\text{OH}} \)	HIGH-level output voltage	\(V_{\text{I}} = V_{\text{IH}} \) or \(V_{\text{IL}} \)	1.9	2.0	1.9	-	1.9	-	V
		\(I_{\text{O}} = -20 \, \mu A; V_{\text{CC}} = 2.0 \, V \)	4.4	4.5	4.4	-	4.4	-	V
		\(I_{\text{O}} = -20 \, \mu A; V_{\text{CC}} = 4.5 \, V \)	5.9	6.0	5.9	-	5.9	-	V
		\(I_{\text{O}} = -6.0 \, mA; V_{\text{CC}} = 4.5 \, V \)	3.98	4.32	3.84	-	3.7	-	V
		\(I_{\text{O}} = -7.8 \, mA; V_{\text{CC}} = 6.0 \, V \)	5.48	5.81	5.34	-	5.2	-	V
Table 6. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>25 °C</th>
<th>-40 °C to +85 °C</th>
<th>-40 °C to +125 °C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>VOL</td>
<td>LOW-level output voltage</td>
<td>(V_I = V_{IH}) or (V_{IL})</td>
<td>(I_O = 20 \ \mu A; \ V_{CC} = 2.0 \ \text{V})</td>
<td>- 0</td>
<td>0.1</td>
<td>- 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_O = 20 \ \mu A; \ V_{CC} = 4.5 \ \text{V})</td>
<td>- 0</td>
<td>0.1</td>
<td>- 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_O = 20 \ \mu A; \ V_{CC} = 6.0 \ \text{V})</td>
<td>- 0</td>
<td>0.1</td>
<td>- 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_O = 6.0 \ \text{mA}; \ V_{CC} = 4.5 \ \text{V})</td>
<td>- 0.15</td>
<td>0.26</td>
<td>- 0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_O = 7.8 \ \text{mA}; \ V_{CC} = 6.0 \ \text{V})</td>
<td>- 0.16</td>
<td>0.26</td>
<td>- 0.33</td>
</tr>
<tr>
<td>Ii</td>
<td>input leakage current</td>
<td>(V_I = V_{CC}) or GND; (V_{CC} = 6.0 \ \text{V})</td>
<td>- -</td>
<td>±0.1</td>
<td>- ±1.0</td>
<td>- ±1.0</td>
</tr>
<tr>
<td>Ioz</td>
<td>OFF-state output current</td>
<td>(V_I = V_{IH}) or (V_{IL}); (V_O = V_{CC}) or GND; (V_{CC} = 6.0 \ \text{V})</td>
<td>- -</td>
<td>±0.5</td>
<td>- ±5.0</td>
<td>- ±10.0</td>
</tr>
<tr>
<td>Icc</td>
<td>supply current</td>
<td>(V_I = V_{CC}) or GND; (I_O = 0 \ \text{A}); (V_{CC} = 6.0 \ \text{V})</td>
<td>- -</td>
<td>8.0</td>
<td>- 80</td>
<td>- 160</td>
</tr>
<tr>
<td>Ci</td>
<td>input capacitance</td>
<td>-</td>
<td>3.5</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

74HCT253

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>25 °C</th>
<th>-40 °C to +85 °C</th>
<th>-40 °C to +125 °C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>VH</td>
<td>HIGH-level input voltage</td>
<td>(V_I = V_{IH}) or (V_{IL}); (V_{CC} = 4.5 \ \text{V}) to (5.5 \ \text{V})</td>
<td>2.0</td>
<td>1.6</td>
<td>- 2.0</td>
<td>- 2.0</td>
</tr>
<tr>
<td>VL</td>
<td>LOW-level input voltage</td>
<td>(V_I = V_{IH}) or (V_{IL}); (V_{CC} = 4.5 \ \text{V}) to (5.5 \ \text{V})</td>
<td>-</td>
<td>1.2</td>
<td>0.8</td>
<td>- 0.8</td>
</tr>
<tr>
<td>VOH</td>
<td>HIGH-level output voltage</td>
<td>(V_I = V_{IH}) or (V_{IL}); (V_{CC} = 4.5 \ \text{V})</td>
<td>(I_O = -20 \ \mu A)</td>
<td>4.4</td>
<td>4.5</td>
<td>- 4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_O = -6 \ \text{mA})</td>
<td>3.98</td>
<td>4.32</td>
<td>- 3.84</td>
</tr>
<tr>
<td>VOL</td>
<td>LOW-level output voltage</td>
<td>(V_I = V_{IH}) or (V_{IL}); (V_{CC} = 4.5 \ \text{V})</td>
<td>(I_O = 20 \ \mu A)</td>
<td>-</td>
<td>0.1</td>
<td>- 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_O = 6.0 \ \text{mA})</td>
<td>- 0.15</td>
<td>0.26</td>
<td>- 0.33</td>
</tr>
<tr>
<td>Ii</td>
<td>input leakage current</td>
<td>(V_I = V_{CC}) or GND; (V_{CC} = 5.5 \ \text{V})</td>
<td>- -</td>
<td>±0.1</td>
<td>- ±1.0</td>
<td>- ±1.0</td>
</tr>
<tr>
<td>Ioz</td>
<td>OFF-state output current</td>
<td>(V_I = V_{IH}) or (V_{IL}); (V_O = V_{CC}) or GND; (V_{CC} = 5.5 \ \text{V})</td>
<td>- -</td>
<td>±0.5</td>
<td>- ±5.0</td>
<td>- ±10</td>
</tr>
<tr>
<td>Icc</td>
<td>supply current</td>
<td>(V_I = V_{CC}) or GND; (I_O = 0 \ \text{A}); (V_{CC} = 5.5 \ \text{V})</td>
<td>- -</td>
<td>8.0</td>
<td>- 80</td>
<td>- 160</td>
</tr>
<tr>
<td>ΔIcc</td>
<td>additional supply current</td>
<td>(V_I = V_{CC}) (- 2.1 \ \text{V}); other inputs at (V_{CC}) or GND; (V_{CC} = 4.5 \ \text{V}) to (5.5 \ \text{V}); (I_O = 0 \ \text{A})</td>
<td>per input pin; 1In, 2In inputs</td>
<td>40</td>
<td>144</td>
<td>- 180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>per input pin; nOE input</td>
<td>110</td>
<td>396</td>
<td>- 495</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>per input pin; Sn input</td>
<td>110</td>
<td>396</td>
<td>- 495</td>
</tr>
<tr>
<td>Ci</td>
<td>input capacitance</td>
<td>-</td>
<td>3.5</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>
11. Dynamic characteristics

Table 7. Dynamic characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>25 °C</th>
<th>-40 °C to +85 °C</th>
<th>-40 °C to +125 °C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
</tr>
<tr>
<td>74HC253</td>
<td>propagation delay</td>
<td>1ln to 1Y or 2ln to 2Y: see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 2.0 V</td>
<td>55</td>
<td>175</td>
<td>220</td>
<td>265 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 4.5 V</td>
<td>20</td>
<td>35</td>
<td>44</td>
<td>53 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 5.0 V; C\textsubscript{L} = 15 pF</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>- ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 6.0 V</td>
<td>16</td>
<td>30</td>
<td>37</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td>enable time</td>
<td>n\text{OE} to nY; see Figure 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 2.0 V</td>
<td>58</td>
<td>175</td>
<td>220</td>
<td>265 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 4.5 V</td>
<td>21</td>
<td>35</td>
<td>44</td>
<td>53 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 5.0 V; C\textsubscript{L} = 15 pF</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>- ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 6.0 V</td>
<td>17</td>
<td>30</td>
<td>37</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td>disable time</td>
<td>n\text{OE} to nY; see Figure 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 2.0 V</td>
<td>41</td>
<td>150</td>
<td>190</td>
<td>225 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 4.5 V</td>
<td>15</td>
<td>30</td>
<td>38</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{CC} = 6.0 V</td>
<td>12</td>
<td>26</td>
<td>33</td>
<td>38 ns</td>
</tr>
<tr>
<td></td>
<td>transition time</td>
<td>see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 2.0 V</td>
<td>14</td>
<td>60</td>
<td>75</td>
<td>90 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 4.5 V</td>
<td>5</td>
<td>12</td>
<td>15</td>
<td>18 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 6.0 V</td>
<td>4</td>
<td>10</td>
<td>13</td>
<td>15 ns</td>
</tr>
<tr>
<td></td>
<td>power dissipation capacitance</td>
<td>per multiplexer; V\text{I} = GND to V\text{CC}</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>- pF</td>
</tr>
<tr>
<td>74HCT253</td>
<td>propagation delay</td>
<td>1ln to 1Y or 2ln to 2Y; see Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 4.5 V</td>
<td>20</td>
<td>38</td>
<td>48</td>
<td>57 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 5.0 V; C\text{L} = 15 pF</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>- ns</td>
</tr>
<tr>
<td></td>
<td>enable time</td>
<td>n\text{OE} to nY; see Figure 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 4.5 V</td>
<td>22</td>
<td>40</td>
<td>50</td>
<td>60 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 5.0 V; C\text{L} = 15 pF</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>- ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\text{CC} = 6.0 V</td>
<td>14</td>
<td>30</td>
<td>38</td>
<td>45 ns</td>
</tr>
</tbody>
</table>
12. Waveforms

Fig 6. Propagation delays input (Sn, 1ln, 2ln) to output (nY) and output (nY) transition times
Measurement points are given in Table 8.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 7. 3-state output enable and disable times

<table>
<thead>
<tr>
<th>Type</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_M</td>
<td>V_M</td>
</tr>
<tr>
<td>74HC253</td>
<td>0.5V_{CC}</td>
<td>0.5V_{CC}</td>
</tr>
<tr>
<td>74HCT253</td>
<td>1.3 V</td>
<td>1.3 V</td>
</tr>
</tbody>
</table>
Measurement points are given in Table 8 and test data is given in Table 9.

Definitions test circuit:
- $R_T = \text{Termination resistance should be equal to output impedance } Z_o \text{ of the pulse generator.}$
- $C_L = \text{Load capacitance including jig and probe capacitance.}$
- $R_L = \text{Load resistor.}$

Fig 8. Test circuit for measuring switching times

<table>
<thead>
<tr>
<th>Type</th>
<th>Input</th>
<th>t_{r, t_f}</th>
<th>Load</th>
<th>Switch position</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC253</td>
<td>V_{CC}</td>
<td>6 ns</td>
<td>50 pF</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>74HCT253</td>
<td>3 V</td>
<td>6 ns</td>
<td>50 pF</td>
<td>1 kΩ</td>
</tr>
</tbody>
</table>
13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

Fig 9. Package outline SOT109-1 (SO16)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>Bp</th>
<th>c</th>
<th>D(1)</th>
<th>E(1)</th>
<th>e</th>
<th>Hx</th>
<th>L</th>
<th>Lp</th>
<th>Q</th>
<th>V</th>
<th>W</th>
<th>Y</th>
<th>Z(1)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.75</td>
<td>0.25</td>
<td>1.45</td>
<td>0.25</td>
<td>0.49</td>
<td>0.25</td>
<td>0.98</td>
<td>10.0</td>
<td>4.0</td>
<td>1.27</td>
<td>6.2</td>
<td>1.05</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
<td>8°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches</td>
<td>0.069</td>
<td>0.010</td>
<td>0.057</td>
<td>0.01</td>
<td>0.019</td>
<td>0.014</td>
<td>0.010</td>
<td>0.0075</td>
<td>0.39</td>
<td>0.38</td>
<td>0.16</td>
<td>0.010</td>
<td>0.244</td>
<td>0.041</td>
<td>0.039</td>
<td>0.028</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION

<table>
<thead>
<tr>
<th>IEC</th>
<th>JEDEC</th>
<th>JEITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT109-1</td>
<td>076E07</td>
<td>MS-012</td>
</tr>
</tbody>
</table>

REFERENCES

EUROPEAN PROJECTION

ISSUE DATE

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

![Package Outline SOT338-1](image_url)

Fig 10. Package outline SOT338-1 (SSOP16)

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A<sub>max</sub></th>
<th>A<sub>1</sub></th>
<th>A<sub>2</sub></th>
<th>A<sub>3</sub></th>
<th>D<sup>(1)</sup></th>
<th>E<sup>(1)</sup></th>
<th>e</th>
<th>H<sub>E</sub></th>
<th>L</th>
<th>L<sub>p</sub></th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>Z<sup>(1)</sup></th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>2</td>
<td>0.21</td>
<td>1.80</td>
<td>0.25</td>
<td>0.38</td>
<td>0.20</td>
<td>6.4</td>
<td>5.4</td>
<td>6.0</td>
<td>5.4</td>
<td>0.65</td>
<td>7.9</td>
<td>7.6</td>
<td>1.25</td>
<td>1.03</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION

<table>
<thead>
<tr>
<th>OUTLINE VERSION</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT338-1</td>
<td>IEC</td>
</tr>
<tr>
<td></td>
<td>JEDEC</td>
</tr>
<tr>
<td></td>
<td>JEITA</td>
</tr>
</tbody>
</table>

EUROPEAN PROJECTION

<table>
<thead>
<tr>
<th>ISSUE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-12-27</td>
</tr>
<tr>
<td>03-02-19</td>
</tr>
</tbody>
</table>
14. Abbreviations

Table 10. Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>ESD</td>
<td>ElectroStatic Discharge</td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Model</td>
</tr>
<tr>
<td>MM</td>
<td>Machine Model</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-Transistor Logic</td>
</tr>
</tbody>
</table>

15. Revision history

Table 11. Revision history

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC_HCT253 v.6</td>
<td>20160201</td>
<td>Product data sheet</td>
<td>-</td>
<td>74HC_HCT253 v.5</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC_HCT253 v.5</td>
<td>20150121</td>
<td>Product data sheet</td>
<td>-</td>
<td>74HC_HCT253 v.4</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC_HCT253 v.4</td>
<td>20111212</td>
<td>Product data sheet</td>
<td>-</td>
<td>74HC_HCT253 v.3</td>
</tr>
<tr>
<td>Modifications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74HC_HCT253 v.3</td>
<td>20100422</td>
<td>Product data sheet</td>
<td>-</td>
<td>74HC_HCT253_CNV v.2</td>
</tr>
<tr>
<td>74HC_HCT253_CNV v.2</td>
<td>970828</td>
<td>Product specification</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
16. Legal information

16.1 Data sheet status

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective [short] data sheet</td>
<td>Development</td>
<td>This document contains data from the objective specification for product development.</td>
</tr>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74HC253; 74HCT253 Dual 4-input multiplexer; 3-state
Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia’s product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com
18. Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General description</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Features and benefits</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Applications</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Ordering information</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Functional diagram</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Pinning information</td>
<td>3</td>
</tr>
<tr>
<td>6.1</td>
<td>Pinning</td>
<td>3</td>
</tr>
<tr>
<td>6.2</td>
<td>Pin description</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Functional description</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Limiting values</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Recommended operating conditions</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Static characteristics</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Dynamic characteristics</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>Waveforms</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>Package outline</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>Abbreviations</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>Revision history</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>Legal information</td>
<td>14</td>
</tr>
<tr>
<td>16.1</td>
<td>Data sheet status</td>
<td>14</td>
</tr>
<tr>
<td>16.2</td>
<td>Definitions</td>
<td>14</td>
</tr>
<tr>
<td>16.3</td>
<td>Disclaimers</td>
<td>14</td>
</tr>
<tr>
<td>16.4</td>
<td>Trademarks</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>Contact information</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>Contents</td>
<td>16</td>
</tr>
</tbody>
</table>