Low-power buffer/line driver; 3-state Rev. 10 — 14 July 2023

1. General description

The 74AUP1G126 provides a single non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (OE). A LOW level at pin OE causes the output to assume a high-impedance OFF-state. This device has the input-disable feature, which allows floating input signals. The inputs are disabled when the output enable input OE is LOW.

Schmitt-trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V. This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

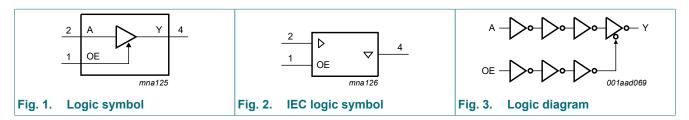
2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- Low static power consumption; I_{CC} = 0.9 µA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- Input-disable feature allows floating input conditions
- I_{OFF} circuitry provides partial power-down mode operation
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 3A exceeds 5000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

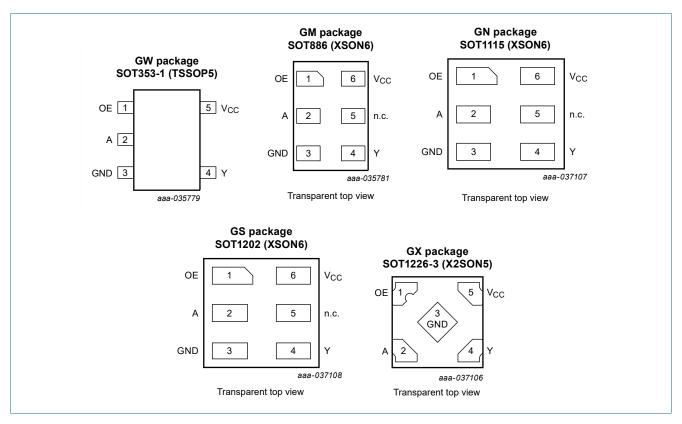
nexperia

3. Ordering information

Table	1.	Ordering	information


Type number	Package						
	Temperature range	Name	Description	Version			
74AUP1G126GW	-40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	<u>SOT353-1</u>			
74AUP1G126GM	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1.45 × 0.5 mm	<u>SOT886</u>			
74AUP1G126GN	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 × 1.0 × 0.35 mm	<u>SOT1115</u>			
74AUP1G126GS	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 × 1.0 × 0.35 mm	<u>SOT1202</u>			
74AUP1G126GX	-40 °C to +125 °C	X2SON5	plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 × 0.8 × 0.32 mm	<u>SOT1226-3</u>			

4. Marking


Table 2. Marking	
Type number	Marking code[1]
74AUP1G126GW	pN
74AUP1G126GM	pN
74AUP1G126GN	pN
74AUP1G126GS	pN
74AUP1G126GX	pN

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description

Symbol	Pin	Description	
	TSSOP5 and X2SON5	XSON6	
OE	1	1	output enable input
A	2	2	data input
GND	3	3	ground (0 V)
Y	4	4	data output
n.c.	-	5	not connected
V _{CC}	5	6	supply voltage

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level; X = Don't care; Z = high-impedance OFF-state.

Input C		Output
OE	A	Y
Н	L	L
Н	Н	Н
L	X	Z

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Мах	Unit
supply voltage		-0.5	+4.6	V
input clamping current	V _I < 0 V	-50	-	mA
input voltage	[1]	-0.5	+4.6	V
output clamping current	V _O < 0 V	-50	-	mA
output voltage	Active mode [1]	-0.5	V _{CC} + 0.5	V
	Power-down mode; $V_{CC} = 0 V$ [1]	-0.5	+4.6	V
output current	$V_{O} = 0 V \text{ to } V_{CC}$	-	±20	mA
supply current		-	+50	mA
ground current		-50	-	mA
storage temperature		-65	+150	°C
total power dissipation	T _{amb} = -40 °C to +125 °C [2]	-	250	mW
	supply voltage input clamping current input voltage output clamping current output voltage output current supply current ground current storage temperature	supply voltage $V_1 < 0 V$ input clamping current $V_1 < 0 V$ input voltage $V_0 < 0 V$ output clamping current $V_0 < 0 V$ output voltageActive modeoutput voltage $V_0 = 0 V to V_{CC} = 0 V$ output current $V_0 = 0 V to V_{CC}$ supply currentImage: Comparison of the second	supply voltage -0.5 input clamping current $V_1 < 0 V$ -50 input voltage (1) -0.5 output clamping current $V_0 < 0 V$ -50 output clamping current $V_0 < 0 V$ -50 output voltage Active mode 1 -0.5 output voltage Active mode 1 -0.5 output current $V_0 = 0 V to V_{CC} = 0 V$ 1 -0.5 output current $V_0 = 0 V to V_{CC}$ - - supply current Import of the second s	supply voltage 0.5 +4.6 input clamping current $V_1 < 0 V$ -50 - input voltage (1) -0.5 +4.6 output clamping current $V_0 < 0 V$ -0.5 +4.6 output clamping current $V_0 < 0 V$ -50 - output clamping current $V_0 < 0 V$ -50 - output voltage Active mode 10 -0.5 $V_{CC} + 0.5$ output current $V_0 = 0 V to V_{CC} = 0 V$ 10 -0.5 +4.6 output current $V_0 = 0 V to V_{CC}$ - +20 +4.6 supply current V_0 = 0 V to V_{CC} - +50 +50 ground current 50 - - +50 storage temperature Intervention Intervention - -

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT353-1 (TSSOP5) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C.

For SOT886 (XSON6) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C.

For SOT1115 (XSON6) package: P_{tot} derates linearly with 3.2 mW/K above 71 °C.

For SOT1202 (XSON6) package: Ptot derates linearly with 3.3 mW/K above 74 °C.

For SOT1226-3 (X2SON5) package: Ptot derates linearly with 3.0 mW/K above 67 °C.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V_{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	0	200	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = 2	5 °C	1		1		
VIH	HIGH-level input voltage	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V
		V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	$\begin{array}{c c c c c c c } & & & & & & & & & & & \\ \hline & & & & & & &$	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-		V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-		V
V _{OH}	HIGH-level output	V _I = V _{IH} or V _{IL}				
	voltage	I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & & \\ & &$	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-		V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	1.11	V	
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32		-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	2.05	-	$\begin{array}{c c} & - & \\ & - & \\ & 0.30 \times V_{CC} \\ 0.35 \times V_{CC} \\ 0.7 \\ 0.9 \\ \\ & & \\$	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-		V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.72	-		V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.6	-		V
V _{OL}	LOW-level output	V _I = V _{IH} or V _{IL}			$\begin{array}{c c} & - & \\ & - & \\ & - & \\ & 0.30 \times V_{CC} \\ 0.35 \times V_{CC} \\ 0.35 \times V_{CC} \\ 0.7 \\ 0.9 \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
	voltage	I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-		V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-		V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.31	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.44	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.44	V

Low-power buffer/line driver; 3-state

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μA
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	±0.2	μA
∆I _{OFF}	additional power-off leakage current	V_1 or V_0 = 0 V to 3.6 V; V_{CC} = 0 V to 0.2 V	-	-	±0.2	μA
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.5	μA
ΔI _{CC}	additional supply current	data input; V _I = V _{CC} - 0.6 V; I _O = 0 A; [1] V _{CC} = 3.3 V	-	-	40	μA
		OE input; $V_1 = V_{CC} - 0.6 \text{ V}$; $I_0 = 0 \text{ A}$; [1] $V_{CC} = 3.3 \text{ V}$	-	-	110	μA
		all inputs; V_1 = GND to 3.6 V; OE = GND; [2] V_{CC} = 0.8 V to 3.6 V	-	-	1	μA
CI	input capacitance	V_{CC} = 0 V to 3.6 V; V _I = GND or V _{CC}	-	0.9	-	pF
Co	output capacitance	output enabled; V _O = GND; V _{CC} = 0 V	-	1.7	-	pF
		output disabled; V _{CC} = 0 V to 3.6 V; V _O = GND or V _{CC}	-	1.5	-	pF
T _{amb} = -4	40 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0		V	
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	±0.2 0.5 40 110 1 - - - - - 0.30 × V _{CC} 0.35 × V _{CC}	V
V _{OH}	HIGH-level output	V _I = V _{IH} or V _{IL}				
V _{OH} Н	voltage	I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.97	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.67	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.55	-	-	V
V _{OL}	LOW-level output	V _I = V _{IH} or V _{IL}				
	voltage	I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V

Low-power buffer/line driver; 3-state

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _l	input leakage current	V_1 = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.5	μA
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	±0.5	μA
∆I _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.6	μA
I _{CC}	supply current	V _I = GND or V _{CC} ; I _O = 0 A; V _{CC} = 0.8 V to 3.6 V	-	-	0.9	μA
∆l _{CC}	additional supply current	data input; V _I = V _{CC} - 0.6 V; I _O = 0 A; [1] V_{CC} = 3.3 V	-	-	50	μA
		OE input; $V_I = V_{CC} - 0.6 V$; $I_O = 0 A$; [1] $V_{CC} = 3.3 V$	-	-	120	μA
		all inputs; V _I = GND to 3.6 V; OE = GND; [2] V_{CC} = 0.8 V to 3.6 V	-	-	1	μA
T _{amb} = -4	40 °C to +125 °C					
VIH	HIGH-level input voltage	V _{CC} = 0.8 V	$0.75 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.25 × V _{CC}	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.25 × V _{CC} 0.30 × V _{CC} 0.7 0.9	V
V _{OH}	HIGH-level output	V _I = V _{IH} or V _{IL}				
	voltage	I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.6 \times V_{CC}$	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.77	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.67	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.40	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output	V _I = V _{IH} or V _{IL}				
	voltage	$I_0 = 20 \ \mu A; V_{CC} = 0.8 \ V \text{ to } 3.6 \ V$	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.33 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V

Low-power buffer/line driver; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μA
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	±0.75	μA
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μA
I _{CC}	supply current	V _I = GND or V _{CC} ; I _O = 0 A; V _{CC} = 0.8 V to 3.6 V	-	-	1.4	μA
ΔI _{CC}	additional supply current	data input; $V_1 = V_{CC} - 0.6 V$; $I_0 = 0 A$; [1] $V_{CC} = 3.3 V$	-	-	75	μA
		OE input; $V_1 = V_{CC} - 0.6 \text{ V}$; $I_0 = 0 \text{ A}$; [1] $V_{CC} = 3.3 \text{ V}$	-	-	180	μA
		all inputs; V_1 = GND to 3.6 V; OE = GND; [2] V_{CC} = 0.8 V to 3.6 V	-	-	1	μA

[1] One input at V_{CC} - 0.6 V, other input at V_{CC} or GND.

[2] To show I_{CC} remains very low when the input-disable feature is enabled.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6

Symbol	Parameter	Conditions	Min	Typ[1]	Мах	Unit
T _{amb} = 2	25 °C; C _L = 5 pF					
t _{pd}	propagation delay	A to Y; see <u>Fig. 4</u> [2]				
		V _{CC} = 0.8 V	-	20.6	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.8	5.5	10.5	ns
		V _{CC} = 1.4 V to 1.6 V	2.2	3.9	6.1	ns
		V _{CC} = 1.65 V to 1.95 V	1.9	3.2	4.8	ns
		V _{CC} = 2.3 V to 2.7 V	1.6	2.6	3.6	ns
		V _{CC} = 3.0 V to 3.6 V	1.4	2.4	3.1	ns
t _{en}	enable time	OE to Y; see <u>Fig. 5</u> [3]			10.5 6.1 4.8 3.6	
		V _{CC} = 0.8 V	-	71.6		ns
		V _{CC} = 1.1 V to 1.3 V	2.8	6.2		ns
		V _{CC} = 1.4 V to 1.6 V	2.3	4.2		ns
		V _{CC} = 1.65 V to 1.95 V	1.9	3.3		ns
		V _{CC} = 2.3 V to 2.7 V	1.5	2.4	3.6	ns
		V _{CC} = 3.0 V to 3.6 V	1.3	2.0	10.5 6.1 4.8 3.6 3.1 - 12.4 6.9 5.3 3.6 2.9 - 6.2 4.4 4.4 3.2	ns
t _{dis}	disable time	OE to Y; see <u>Fig. 5</u> [4]				
		V _{CC} = 0.8 V	-	10.3	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.6	4.2	3.6 3.1 - 12.4 6.9 5.3 3.6 2.9 - 6.2 4.4 4.4	ns
		V _{CC} = 1.4 V to 1.6 V	2.1	3.2	4.4	ns
		V _{CC} = 1.65 V to 1.95 V	2.1	3.1	4.4	ns
		V _{CC} = 2.3 V to 2.7 V	1.7	2.4	3.2	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	2.8	6.1 4.8 3.6 3.1 - 12.4 6.9 5.3 3.6 2.9 - 6.2 4.4 4.4 3.2	ns

Symb	ol Parameter	Conditions		Min	Typ[1]	Мах	Unit
T _{amb} =	= 25 °C; C _L = 10 pF						
t _{pd}	propagation delay	see <u>Fig. 4</u>	[2]				
		V _{CC} = 0.8 V		-	24.0	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.2	6.4	12.3	ns
		V _{CC} = 1.4 V to 1.6 V		2.1	4.5	7.3	ns
		V _{CC} = 1.65 V to 1.95 V		1.9	3.8	5.5	ns
		V _{CC} = 2.3 V to 2.7 V		2.1	3.2	4.2	ns
		V _{CC} = 3.0 V to 3.6 V		1.8	3.0	3.8	ns
t _{en}	enable time	see <u>Fig. 5</u>	[3]				
		V _{CC} = 0.8 V		-	75.3	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.2	7.1	14.1	ns
		V _{CC} = 1.4 V to 1.6 V		2.2	4.8	8.0	ns
		V _{CC} = 1.65 V to 1.95 V		1.8	3.9	5.9	ns
		V _{CC} = 2.3 V to 2.7 V		1.5	2.9	4.2	ns
		V _{CC} = 3.0 V to 3.6 V		1.4	2.6	3.6	ns
t _{dis}	disable time	see <u>Fig. 5</u>	[4]				
		V _{CC} = 0.8 V		-	12.2	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.5	5.3	7.6	ns
		V _{CC} = 1.4 V to 1.6 V		2.2	4.1	5.6	ns
		V _{CC} = 1.65 V to 1.95 V		2.4	4.2	5.7	ns
		V _{CC} = 2.3 V to 2.7 V		1.9	3.2	4.1	ns
		V _{CC} = 3.0 V to 3.6 V		2.4	4.1	5.0	ns
T _{amb} =	= 25 °C; C _L = 15 pF				11		
t _{pd}	propagation delay	see Fig. 4	[2]				
		V _{CC} = 0.8 V		-	27.4	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.6	7.2	14.1	ns
		V _{CC} = 1.4 V to 1.6 V		3.0	5.1	8.1	ns
		V _{CC} = 1.65 V to 1.95 V		2.2	4.3	6.3	ns
		V _{CC} = 2.3 V to 2.7 V		2.0	3.7	4.9	ns
		V _{CC} = 3.0 V to 3.6 V		2.0	3.5	4.4	ns
t _{en}	enable time	see <u>Fig. 5</u>	[3]				
		V _{CC} = 0.8 V		-	79.2	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.6	7.8	15.8	ns
		V _{CC} = 1.4 V to 1.6 V		3.0	5.4	8.8	ns
		V _{CC} = 1.65 V to 1.95 V		2.1	4.3	6.7	ns
		V _{CC} = 2.3 V to 2.7 V		1.8	3.4	4.8	ns
		V _{CC} = 3.0 V to 3.6 V		1.6	3.1	4.3	ns
t _{dis}	disable time	see <u>Fig. 5</u>	[4]				
		V _{CC} = 0.8 V		-	14.9	-	ns
		V _{CC} = 1.1 V to 1.3 V		4.3	6.4	8.5	ns
		V _{CC} = 1.4 V to 1.6 V		3.0	5.0	6.6	ns
		V _{CC} = 1.65 V to 1.95 V		3.1	5.4	6.6	ns
		V _{CC} = 2.3 V to 2.7 V		2.4	4.0	5.0	ns
		V _{CC} = 3.0 V to 3.6 V		3.2	5.3	6.2	ns

Symbol	Parameter	Conditions		Min	Typ[1]	Мах	Unit
T _{amb} = 2	25 °C; C _L = 30 pF						
t _{pd}	propagation delay	see <u>Fig. 4</u>	[2]				
		V _{CC} = 0.8 V		-	37.4	-	ns
		V _{CC} = 1.1 V to 1.3 V		4.8	9.5	18.7	ns
		V _{CC} = 1.4 V to 1.6 V		4.0	6.7	10.8	ns
		V _{CC} = 1.65 V to 1.95 V		2.9	5.6	8.4	ns
		V_{CC} = 2.3 V to 2.7 V		2.7	4.8	6.3	ns
		V _{CC} = 3.0 V to 3.6 V		2.7	4.6	5.8	ns
t _{en}	enable time	see Fig. 5	[3]				
		V _{CC} = 0.8 V		-	90.6	-	ns
		V _{CC} = 1.1 V to 1.3 V		4.7	10.0	20.4	ns
		V _{CC} = 1.4 V to 1.6 V		3.0	6.9	11.3	ns
		V _{CC} = 1.65 V to 1.95 V		2.6	5.6	8.6	ns
		V _{CC} = 2.3 V to 2.7 V		2.3	4.5	6.3	ns
		V _{CC} = 3.0 V to 3.6 V		2.2	4.2	5.8	ns
t _{dis}	disable time	see <u>Fig. 5</u>	[4]				
		V _{CC} = 0.8 V		-	51.6	-	ns
		V _{CC} = 1.1 V to 1.3 V		6.0	9.8	13.6	ns
		V _{CC} = 1.4 V to 1.6 V		4.5	7.7	10.5	ns
		V _{CC} = 1.65 V to 1.95 V		5.2	8.8	11.4	ns
		V _{CC} = 2.3 V to 2.7 V		3.9	6.4	7.4	ns
		V _{CC} = 3.0 V to 3.6 V		5.5	9.0	10.7	ns
T _{amb} = 2	25 °C						
C _{PD}	power dissipation capacitance	f = 1 MHz; V _I = GND to V _{CC} ; output enabled	[5]				
		V _{CC} = 0.8 V		-	2.7	-	pF
		V _{CC} = 1.1 V to 1.3 V		-	2.8	-	pF
		V _{CC} = 1.4 V to 1.6 V		-	2.9	-	pF
		V _{CC} = 1.65 V to 1.95 V		-	3.0	-	pF
		V _{CC} = 2.3 V to 2.7 V		-	3.6	-	pF
		V _{CC} = 3.0 V to 3.6 V		-	4.2	-	pF

[1] All typical values are measured at nominal V_{CC}.

[4] t_{dis} is the same as t_{PHZ} and t_{PLZ} . [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma(C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

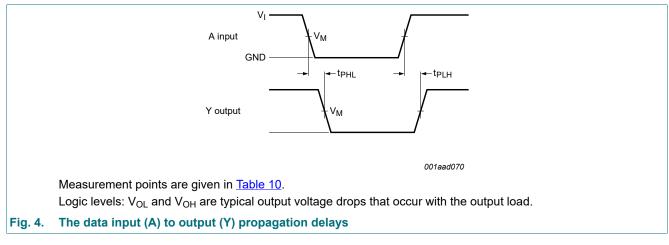
 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

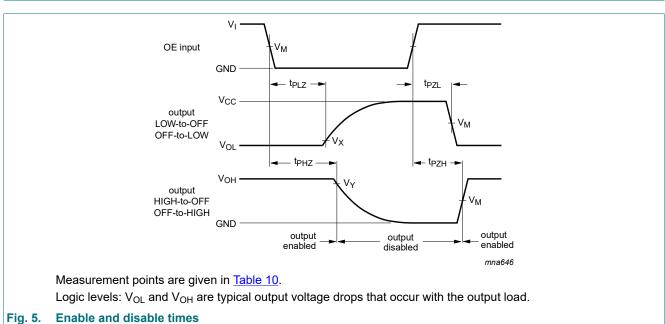
V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.


Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6


Symbol	Parameter	Conditions		-40 °C t	o +85 °C	-40 °C to	o +125 °C	Unit
				Min	Max	Min	Max	
C _L = 5 p	F							
t _{pd}	propagation delay	A to Y; see Fig. 4	[1]					
		V _{CC} = 1.1 V to 1.3 V		2.5	11.7	2.5	12.9	ns
		V _{CC} = 1.4 V to 1.6 V		2.0	7.3	2.0	8.1	ns
		V _{CC} = 1.65 V to 1.95 V		1.7	6.1	1.7	6.7	ns
		V _{CC} = 2.3 V to 2.7 V		1.4	4.3	1.4	4.9	ns
		V _{CC} = 3.0 V to 3.6 V		1.2	3.9	1.2	4.4	ns
t _{en}	enable time	OE to Y; see Fig. 5	[2]					
		V _{CC} = 1.1 V to 1.3 V		2.6	13.6	2.6	13.6	ns
		V _{CC} = 1.4 V to 1.6 V		2.2	7.4	2.2	7.7	ns
		V _{CC} = 1.65 V to 1.95 V		1.7	5.9	1.7	6.2	ns
		V _{CC} = 2.3 V to 2.7 V		1.4	3.8	1.4	4.1	ns
		V _{CC} = 3.0 V to 3.6 V		1.2	3.2	1.2	3.4	ns
t _{dis}	disable time	OE to Y; see Fig. 5	[3]					
		V _{CC} = 1.1 V to 1.3 V		2.9	6.4	2.9	6.5	ns
		V _{CC} = 1.4 V to 1.6 V		2.2	4.6	2.2	4.7	ns
		V _{CC} = 1.65 V to 1.95 V		1.7	4.6	1.7	4.8	ns
		V _{CC} = 2.3 V to 2.7 V		1.4	3.4	1.4	3.6	ns
		V _{CC} = 3.0 V to 3.6 V		1.2	3.7	1.2	3.8	ns
C _L = 10	pF		I		1	I	1	
t _{pd}	propagation delay	A to Y; see Fig. 4	[1]					
		V _{CC} = 1.1 V to 1.3 V		3.0	13.8	3.0	15.2	ns
		V _{CC} = 1.4 V to 1.6 V		1.9	8.5	1.9	9.4	ns
		V _{CC} = 1.65 V to 1.95 V		1.7	6.8	1.7	7.6	ns
		V _{CC} = 2.3 V to 2.7 V		1.6	5.3	1.6	5.9	ns
		V _{CC} = 3.0 V to 3.6 V		1.6	4.6	1.6	5.2	ns
t _{en}	enable time	OE to Y; see Fig. 5	[2]					
		V _{CC} = 1.1 V to 1.3 V		3.0	15.4	3.0	15.4	ns
		V _{CC} = 1.4 V to 1.6 V		2.1	8.3	2.1	8.6	ns
		V _{CC} = 1.65 V to 1.95 V		1.7	6.5	1.7	6.8	ns
		V _{CC} = 2.3 V to 2.7 V		1.4	4.5	1.4	4.8	ns
		V _{CC} = 3.0 V to 3.6 V		1.3	3.8	1.3	4.0	ns
t _{dis}	disable time	OE to Y; see Fig. 5	[3]					
		V _{CC} = 1.1 V to 1.3 V		3.3	7.9	3.3	7.9	ns
		V _{CC} = 1.4 V to 1.6 V		2.1	5.7	2.1	5.9	ns
		V _{CC} = 1.65 V to 1.95 V		1.7	5.8	1.7	6.0	ns
		V _{CC} = 2.3 V to 2.7 V		1.4	4.3	1.4	4.5	ns
		V _{CC} = 3.0 V to 3.6 V		1.3	5.2	1.3	5.3	ns

Symbol	Parameter	Conditions		-40 °C t	o +85 °C	-40 °C to	• +125 °C	Unit
				Min	Max	Min	Max	
C _L = 15	pF				1	1		
t _{pd}	propagation delay	A to Y; see <u>Fig. 4</u>	[1]					
		V _{CC} = 1.1 V to 1.3 V		3.3	15.8	3.3	17.5	ns
		V _{CC} = 1.4 V to 1.6 V		2.5	9.8	2.5	10.9	ns
		V _{CC} = 1.65 V to 1.95 V		2.0	7.9	2.0	8.8	ns
		V _{CC} = 2.3 V to 2.7 V		1.8	6.0	1.8	6.7	ns
		V _{CC} = 3.0 V to 3.6 V		1.8	5.4	1.8	6.1	ns
t _{en}	enable time	OE to Y; see Fig. 5	[2]					
		V _{CC} = 1.1 V to 1.3 V		3.3	17.1	3.3	17.1	ns
		V _{CC} = 1.4 V to 1.6 V		2.9	9.4	2.9	9.7	ns
		V _{CC} = 1.65 V to 1.95 V		2.0	7.3	2.0	7.7	ns
		V _{CC} = 2.3 V to 2.7 V		1.7	5.2	1.7	5.6	ns
		V _{CC} = 3.0 V to 3.6 V		1.5	4.5	1.5	4.7	ns
t _{dis}	disable time	OE to Y; see Fig. 5	[3]					
		V _{CC} = 1.1 V to 1.3 V		3.7	9.3	3.7	9.4	ns
		V _{CC} = 1.4 V to 1.6 V		2.5	6.9	2.5	7.0	ns
		V _{CC} = 1.65 V to 1.95 V		2.0	7.4	2.0	7.5	ns
		V _{CC} = 2.3 V to 2.7 V		1.7	5.1	1.7	5.5	ns
		V _{CC} = 3.0 V to 3.6 V		1.5	6.7	1.5	6.9	ns
C _L = 30	pF	·						
t _{pd}	propagation delay	A to Y; see Fig. 4	[1]					
		V _{CC} = 1.1 V to 1.3 V		4.4	21.4	4.4	24.0	ns
		V _{CC} = 1.4 V to 1.6 V		3.0	13.0	3.0	14.5	ns
		V _{CC} = 1.65 V to 1.95 V		2.6	10.3	2.6	11.5	ns
		V _{CC} = 2.3 V to 2.7 V		2.5	7.8	2.5	8.7	ns
		V _{CC} = 3.0 V to 3.6 V		2.5	7.0	2.5	8.3	ns
t _{en}	enable time	OE to Y; see <u>Fig. 5</u>	[2]					
		V _{CC} = 1.1 V to 1.3 V		4.3	22.0	4.3	22.0	ns
		V _{CC} = 1.4 V to 1.6 V		3.7	12.0	3.7	12.5	ns
		V _{CC} = 1.65 V to 1.95 V		3.2	9.5	3.2	10.1	ns
		V _{CC} = 2.3 V to 2.7 V		2.9	6.8	2.9	7.3	ns
		V _{CC} = 3.0 V to 3.6 V		2.7	6.4	2.7	6.7	ns
t _{dis}	disable time	OE to Y; see <u>Fig. 5</u>	[3]					
		V _{CC} = 1.1 V to 1.3 V		4.7	14.3	4.7	14.4	ns
		V _{CC} = 1.4 V to 1.6 V		3.0	10.7	3.0	11.0	ns
		V _{CC} = 1.65 V to 1.95 V		2.6	11.5	2.6	11.6	ns
		V _{CC} = 2.3 V to 2.7 V		2.3	9.0	2.3	10.2	ns
		V _{CC} = 3.0 V to 3.6 V		2.2	10.8	2.2	12.0	ns

 t_{pd} is the same as t_{PLH} and $t_{\text{PHL}}.$ [1]

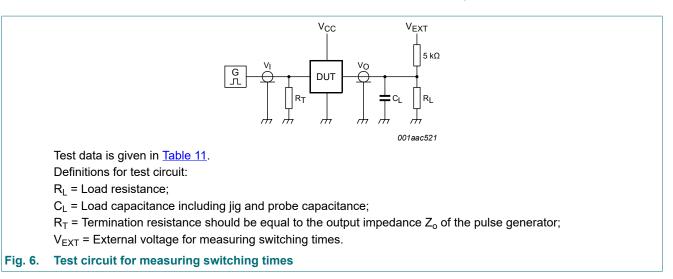
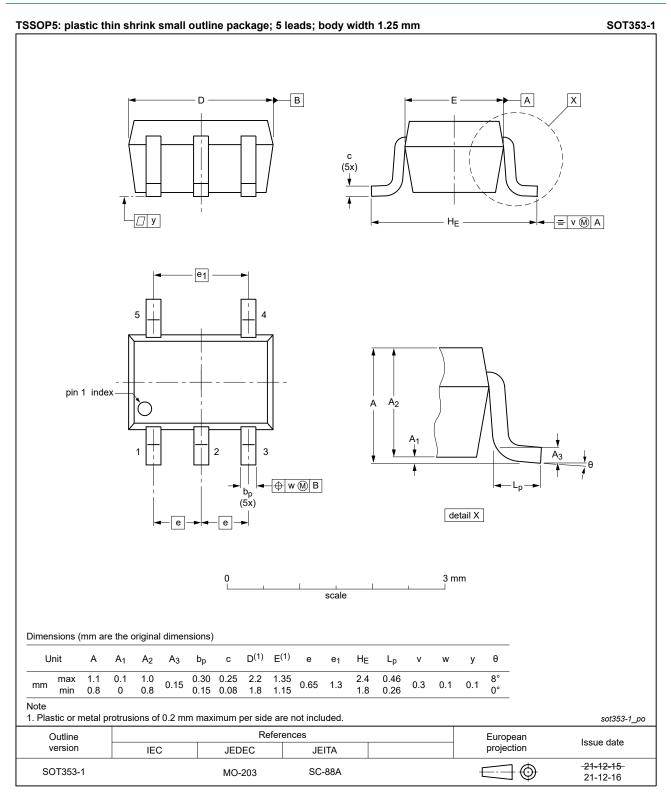

11.1. Waveforms and test circuit

Fig. 5.

Supply voltage	Input			Output		
V _{cc}	V _M	VI	t _r = t _f	V _M	Vx	V _Y
0.8 V to 1.6 V	0.5 × V _{CC}	V _{CC}	≤ 3.0 ns	$0.5 \times V_{CC}$	V _{OL} + 0.1 V	V _{OH} - 0.1 V
1.65 V to 2.7 V	0.5 × V _{CC}	V _{CC}	≤ 3.0 ns	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	V _{OH} - 0.15 V
3.0 V to 3.6 V	0.5 × V _{CC}	V _{CC}	≤ 3.0 ns	$0.5 \times V_{CC}$	V _{OL} + 0.3 V	V _{OH} - 0.3 V

Low-power buffer/line driver; 3-state

Table 11. Test data


Supply voltage	Load		V _{EXT}		
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	2 × V _{CC}

[1] For measuring enable and disable times $R_L = 5 k\Omega$.

For measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

74AUP1G126

12. Package outline

Fig. 7. Package outline SOT353-1 (TSSOP5)

Low-power buffer/line driver; 3-state

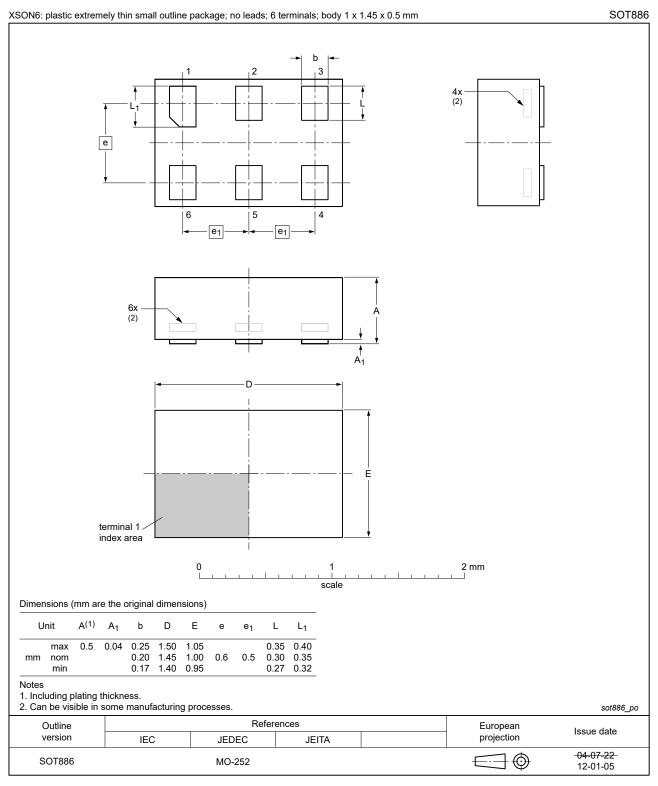
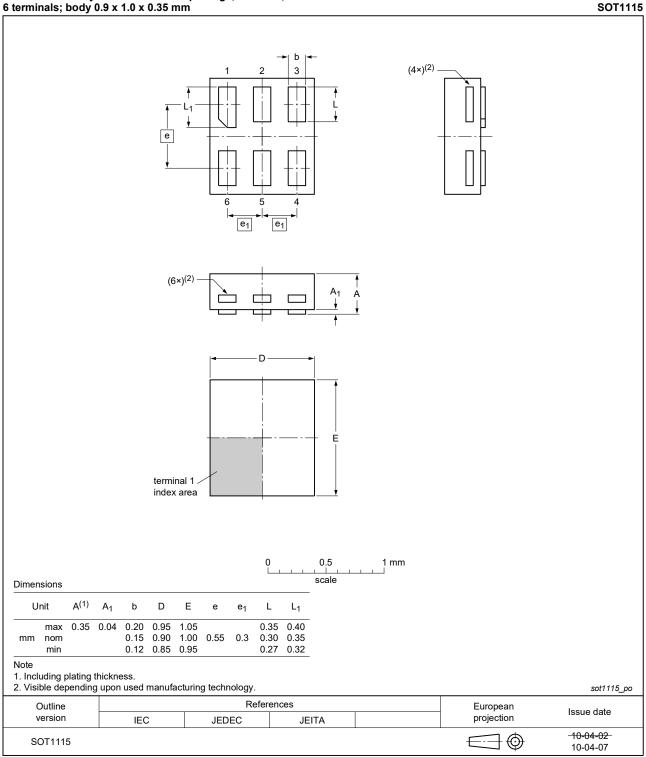



Fig. 8. Package outline SOT886 (XSON6)

Low-power buffer/line driver; 3-state

XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Low-power buffer/line driver; 3-state

XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

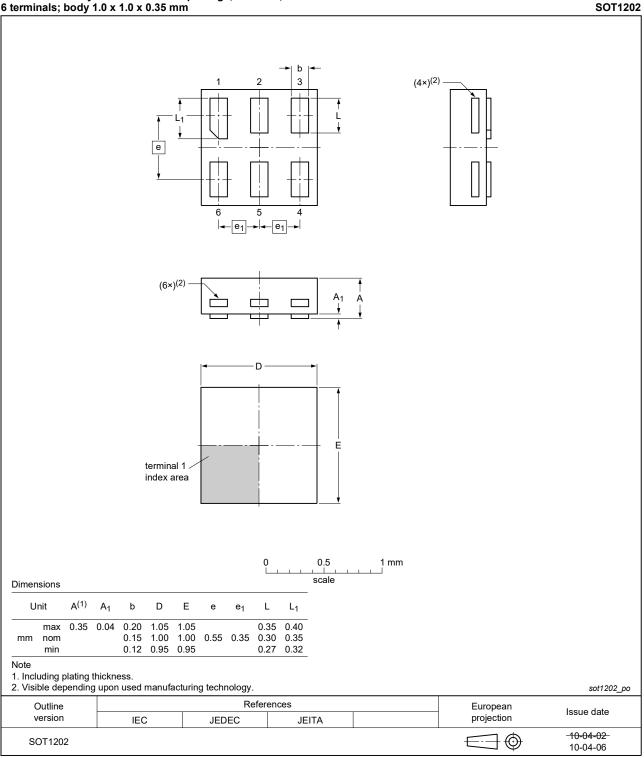
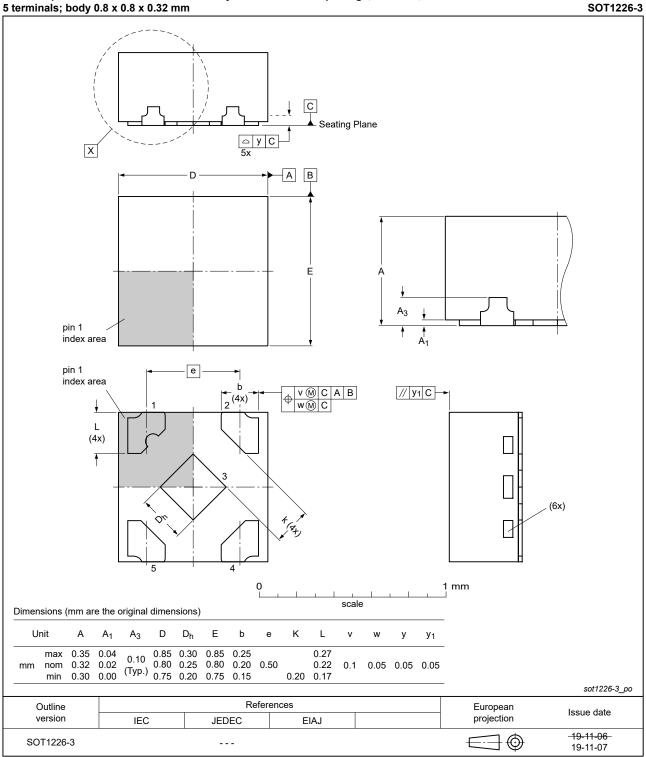



Fig. 10. Package outline SOT1202 (XSON6)

Low-power buffer/line driver; 3-state

X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 x 0.8 x 0.32 mm

Fig. 11. Package outline SOT1226-3 (X2SON5)

13. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1G126 v.10	20230714	Product data sheet	-	74AUP1G126 v.9
Modifications:	• <u>Section 2</u> : E	SD specification updated	according to the la	atest JEDEC standard.
74AUP1G126 v.9	20220114	Product data sheet	-	74AUP1G126 v.8
Modifications:	• Fig. 7: Pack	age outline drawing for SC	DT353-1 (TSSOP5	5) has changed.
74AUP1G126 v.8	20210430	Product data sheet	-	74AUP1G126 v.7
Modifications:	Type number	X2SON5) package change er 74AUP1G126GF (SOT8 rating values for P _{tot} total p	91) removed.	
74AUP1G126 v.7	20180516	Product data sheet	-	74AUP1G126 v.6
Modifications:	guidelines o	of this data sheet has beer of Nexperia. have been adapted to the	-	
74AUP1G126 v.6	20151002	Product data sheet	-	74AUP1G126 v.5
Modifications:	I _{OK} minimur	m changed from -0.5 mA to	o -50 mA (errata) i	n <u>Table 5</u>
74AUP1G126 v.5	20120628	Product data sheet	-	74AUP1G126 v.4
Modifications:		number 74AUP1G126GX Itline drawing of SOT886 (I	• •	
74AUP1G126 v.4	20111124	Product data sheet	-	74AUP1G126 v.3
74AUP1G126 v.3	20100903	Product data sheet	-	74AUP1G126 v.2
74AUP1G126 v.2	20060628	Product data sheet	-	74AUP1G126 v.1
74AUP1G126 v.1	20050725	Product data sheet	-	-

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

Low-power buffer/line driver; 3-state

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Product data sheet

Contents

1
1
2
2
2
3
3
3
4
4 4
4
4 4
4 4 5
4 4 5 8
4

© Nexperia B.V. 2023. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 14 July 2023