This application note provides mounting instructions for SOT78 (TO-220AB) and SOT186A (TO-220F) packages.
1. Introduction

This application note provides mounting instructions for SOT78 (TO-220AB) and SOT186A (TO-220F) packages.

2. General data and instructions

2.1. General rules

1. Fasten the device to the heatsink before soldering the leads
2. Avoid stress to the leads
3. Keep mounting tool (for example, screwdriver) clear of the plastic body
4. When screw mounting, the washer must not exert any force on the plastic part of the body.

2.2. Mounting methods

Clip mounting

Mounting with a spring clip gives:

- A good thermal contact under the crystal area, and slightly lower thermal resistance than screw mounting
- Safe insulation for mains operation.

Minimum force for good heat transfer is 10 N. Maximum force to avoid damaging the device is 80 N.

M3 screw mounting

It is recommended that a metal washer is inserted between screw head and mounting tab. Do not use self-tapping screws.

Mounting torque for screw mounting (for thread-forming screws the values are final values):

- Minimum torque for good heat transfer is 0.55 Nm
- Maximum torque to avoid damaging the device is 0.80 Nm.

When a nut or screw is driven directly against the tab, the torques are as follows:

- Minimum torque for good heat transfer is 0.40 Nm
- Maximum torque to avoid damaging the device is 0.60 Nm.

Rivet mounting non-insulated

Do not pop-rivet the device to the heatsink. It is permissible to press-rivet the metal tab providing that eyelet rivets of soft material are used, and the press forces are slowly and carefully controlled.

This method is not permitted for full-pack packages (SOT186A) because it damages the plastic encapsulation insulation properties.

2.3. Heatsink requirements

Flatness in the mounting area: 0.02 mm maximum per 10 mm.

Deburr the mounting holes. For further information, see Section 3.
2.4. Heatsink compound

The thermal resistance from mounting base to heatsink $R_{th(mb-h)}$ can be reduced by applying a smear of aluminium oxide compound between the contact surfaces. Values given are of thermal resistance using this type of compound. Dow Corning 340 Heat sink compound is recommended. For insulated mounting, apply the compound to the bottom of both device and insulator. Avoid applying excess compound as the thermal resistance that results can be higher than if no compound is applied.

2.5. Thermal data for TO-220 packages with various heatsink mounting methods

The mounting base-to-heatsink thermal resistance $R_{th(mb-h)}$ is package-dependent, not device dependent. It applies to all devices in a given package. The figures given in Table 1 assume optimum mounting conditions (that is flat heatsink, spring clip mounted, optimum quantity of heatsink compound where applicable). However the junction-to-mounting base thermal resistance $R_{th(j-mb)}$ is device-dependent; figures are quoted separately in each data sheet.

For full-pack (SOT186A) devices, junction-to-heatsink thermal resistance $R_{th(j-h)}$ with and without heatsink compound are quoted separately in each data sheet.

<table>
<thead>
<tr>
<th>Mounting method</th>
<th>clip (K/W)</th>
<th>screw (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct with heatsink compound</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Direct without heatsink compound</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>With heatsink compound and 0.1 mm maximum mica insulator</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>With heatsink compound and 0.25 mm maximum alumina insulator</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>With heatsink compound and 0.05 mm mica insulator insulated up to 500 V</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>Without heatsink compound and 0.05 mm mica insulator insulated up to 500 V</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Additional insulators are generally not required when mounting the full-pack (SOT186A) package.

2.6. Soldering

Recommendations for devices with a maximum storage temperature rating ≤ 175 °C:

Dip or wave soldering

Maximum permissible solder temperature is 260 °C at a distance from the body of > 5 mm and for a total contact time with soldering bath or waves of < 7 s

Hand soldering

Maximum permissible temperature is 275 °C at a distance from the body of > 3 mm and for a total contact time with the soldering iron of < 5 s.

The body of the device must not touch anything with a temperature > 200 °C.

It is not permitted to solder the metal tab of the device to a heatsink.

Avoid any force on body and leads during or after soldering; do not correct the position of the device or of its leads after soldering.
2.7. Lead bending

Maximum permissible tensile force on the body for 5 seconds is 20 N.

The leads can be bent, twisted or straightened. To keep forces within the above mentioned limits, always clamp the leads rigidly near the body during bending. This prevents damage to the seal of the leads within the plastic body.

Leads can be bent as near to the body as required, but allow an adequate length of minimum 1.75 mm from the body to the start of a bend radius for clamping.

The internal radius of bend must never be less than the thickness of the lead. A minimum radius of at least 1.5 × lead thickness is preferred; see Fig. 1. Surface cracks in the plating on the lead are common when a radius less than 1.5 × lead thickness is used. Although exposing the copper material, these cracks do not affect the mechanical strength of the lead.

![Fig. 1. Minimum lead bend radius](image)

All dimensions in mm.

2.8. Additional guidelines

It is recommended that, where a device is rigidly secured to a heatsink which is in turn rigidly secured to a PCB, a bend is formed into the leads to act as an expansion loop. This prevents differential expansion of the mounting parts transferring stress to the soldering joint, as shown in Fig. 2. It is only necessary where the device is mounted so rigidly that expansion forces are transmitted through the assembly.

![Fig. 2. Printed-circuit board and heatsink mounting](image)
3. Instructions for clip mounting

3.1. Direct mounting with spring clip

1. Apply heatsink compound to the mounting base, then place the device on the heatsink.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 30° to the vertical; see Fig. 3 and Fig. 4.
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip must bear on the plastic body, not on the tab; see Fig. 5.

3.2. Insulated mounting with spring clip

1. Apply heatsink compound to the bottom of both device and insulator, then place the device with the insulator on the heatsink.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 30° to the vertical; see Fig. 6, Fig. 7 and Fig. 8.
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip must bear on the plastic body, not on the tab. Ensure that the device is centered on the mica insulator to prevent unwanted movement.
4. Instructions for screw mounting

4.1. Direct mounting with screw and spacing washer

Through heatsink with nut

![Assembly diagram](image1)

![Heatsink requirements diagram](image2)

Fig. 9. Assembly
Fig. 10. Heatsink requirements

Into tapped heatsink

![Assembly diagram](image3)

![Heatsink requirements diagram](image4)

Fig. 11. Assembly
Fig. 12. Heatsink requirements
4.2. Insulated mounting with screw and spacing washer

Not recommended where mounting tab is at mains voltage. Not applicable to full-pack packages (SOT186A).

Through heatsink with nut

![Diagram showing insulated screw mounting with washer]

Fig. 13. Insulated screw mounting with washer

![Diagram showing heatsink requirements for 500 V insulation]

Fig. 14. Heatsink requirements for 500 V insulation

![Diagram showing heatsink requirements for 800 V insulation]

Fig. 15. Heatsink requirements for 800 V insulation

All dimensions in mm.
Into tapped heatsink

Fig. 16. Insulated screw mounting with washer into tapped heatsink

All dimensions in mm.

Fig. 17. Heatsink requirements for 500 V insulation

Fig. 18. Heatsink requirements for 1000 V insulation

5. Revision history

Table 2. Revision history

<table>
<thead>
<tr>
<th>Revision number</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2021-05-21</td>
<td>Document revised to use latest Nexperia branding and legal information.</td>
</tr>
<tr>
<td>1.0</td>
<td>2012-05-29</td>
<td>initial version</td>
</tr>
</tbody>
</table>
6. Legal information

Definitions
Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the Nexperia product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). Nexperia does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
List of Tables

Table 1. Thermal resistance from mounting base to heatsink; $R_{th(mb-h)}$..........................3
Table 2. Revision history...8
List of Figures

Fig. 1. Minimum lead bend radius.................................4
Fig. 2. Printed-circuit board and heatsink mounting........4
Fig. 3. Heatsink requirements.......................................5
Fig. 4. Mounting..5
Fig. 5. Position of device (top view)..............................5
Fig. 6. Heatsink requirements.......................................5
Fig. 7. Mounting..5
Fig. 8. Position of device (top view)..............................5
Fig. 9. Assembly..6
Fig. 10. Heatsink requirements..............................6
Fig. 11. Assembly..6
Fig. 12. Heatsink requirements..............................6
Fig. 13. Insulated screw mounting with washer.............7
Fig. 14. Heatsink requirements for 500 V insulation........7
Fig. 15. Heatsink requirements for 800 V insulation........7
Fig. 16. Insulated screw mounting with washer into tapped heatsink...8
Fig. 17. Heatsink requirements for 500 V insulation........8
Fig. 18. Heatsink requirements for 1000 V insulation........8
Contents

1. Introduction...2
2. General data and instructions......................................2
 2.1. General rules...2
 2.2. Mounting methods...2
 2.3. Heatsink requirements...2
 2.4. Heatsink compound...3
 2.5. Thermal data for TO-220 packages with various
 heatsink mounting methods...3
 2.6. Soldering..3
 2.7. Lead bending...4
 2.8. Additional guidelines..4
3. Instructions for clip mounting.....................................5
 3.1. Direct mounting with spring clip............................5
 3.2. Insulated mounting with spring clip........................5
4. Instructions for screw mounting..................................6
 4.1. Direct mounting with screw and spacing washer........6
 4.2. Insulated mounting with screw and spacing washer....7
5. Revision history...8
6. Legal information..9

© Nexperia B.V. 2021. All rights reserved
For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 21 May 2021