<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>Accurate temperature sensing, temperature control, sensor theoretical accuracy, forward voltage, temperature coefficient, trip temperature, trip temperature error</td>
</tr>
<tr>
<td>Abstract</td>
<td>As the automotive industry moves towards driving higher powered motors in Electronic Power-Assisted Steering (EPAS) and Integrated Starter Alternator (ISA) applications, the need for accurate sensing of temperature and current becomes paramount. This document considers some of the protection strategies available using NXP TrenchPLUS temperature sensing devices.</td>
</tr>
</tbody>
</table>
Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

The market-leader in the field of temperature sensing devices is the BUK9107-40ATC. An N-channel power MOSFET with monolithically-integrated temperature sensing and clamping diodes that internally monitor the temperature of the MOSFET chip. Designed for high current applications, the device has a typical $R_{DS(ON)}$ of 5.8 mΩ at 25 °C with a gate drive of 5 V.

It is relatively simple to incorporate temperature sensing into your temperature protection strategy. Traditionally, a system can be protected against overtemperature using a comparator and a few passive components which directly measure the chip temperature. This application note demonstrates that a more accurate method of temperature control can be achieved using a suitable microcontroller.

2. Example of a temperature sensing device application

A typical temperature sensing circuit is shown in Figure 1 which shows the MOSFET controlled by a microcontroller. The output from the MOSFET temperature sensor is connected to the analog-to-digital input of the microcontroller. The resistor values of R_A and R_G define the current in the sense diode and hence its forward voltage (V_F) and gate switching time.

![Fig 1. Typical temperature sensing circuit](image)

During normal operation, the V_F of the diode is monitored and a reference level ($V_{F(ref)}$) is chosen, below which the device switches off. The value that is chosen for $V_{F(ref)}$ depends on the V_F temperature coefficient (S_F) and the temperature at which the MOSFET should be switched off.

The V_F characteristic is linear over the full temperature range, which enables numerous overtemperature protection strategies to be implemented; see Figure 2. By continually monitoring V_F, the microcontroller can provide an early warning of overtemperature conditions, and can also determine the rate-of-change of temperature.

Depending on the microcontroller used, there are various possible ways to respond to the information provided by the temperature sensor. The information could be used to trigger a latched shutdown, shutdown and cyclic retries, or simply used as a diagnostic tool for the application.
2.1 Theoretical estimation of temperature sensor accuracy

The theoretical accuracy of the temperature sensor depends on three factors:

- Uncertainty of \(V_F \)
- Uncertainty of \(S_F \)
- Chosen value of \(V_F(\text{ref}) \)

The effect of the above factors is shown more clearly in Figure 3. Any inherent variability in \(V_F \) adds a fixed offset to the trip temperature \(T_{\text{trip}} \). Any variation in \(S_F \) is shown by a change in the gradient. A lower value of \(S_F \) causes the device to trip at a higher temperature \(T_{\text{trip}(u)} \). Depending on the value of \(T_{\text{trip}} \) this may lead to devices operating above their maximum operating temperature which may reduce their life expectancy. Conversely, a higher value of \(S_F \) causes erroneous nuisance tripping below the desired set point. Both these factors have implications for the overtemperature protection strategy employed.
The total error in temperature sensor accuracy is the sum of all contributions from the uncertainty of both V_F and S_F.

The values for V_F and S_F of the temperature sensing diode given in the data sheet for the BUK9107-40ATC are shown in Table 1.

Table 1. Temperature sense diode characteristics for BUK9107-40ATC

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>648</td>
<td>658</td>
<td>668</td>
<td>mV</td>
</tr>
<tr>
<td>S_F</td>
<td>temperature coefficient</td>
<td>-1.4</td>
<td>-1.54</td>
<td>-1.68</td>
<td>mV/K</td>
</tr>
</tbody>
</table>

The BUK9107-40ATC has a very tight V_F tolerance of 10 mV, and the variation in S_F is also correspondingly tight. However, if the device is used in the circuit shown in Figure 1 without calibration, then the total error in T_{trip} due to errors in both V_F and S_F becomes significant. The maximum error will occur if the V_F, at $T_j=25 \degree C$, is at its highest value and S_F is at its lowest value.

If T_{trip} is set to 150 $\degree C$ and V_F and S_F are not measured, then the T_{trip} error is given by Equation 1:

$$T_{\text{trip}} = \frac{(V_F - V_{F\text{ref}})}{S_F} - (T_{\text{trip}} - 25)$$

(1)

where the average reference forward voltage $V_{F\text{ref}}$ is given by Equation 2:

$$V_{F\text{ref}} = V_F - (T_{\text{trip}} - 25) \times S_F = 465 \text{ mV}$$

(2)

Substituting the values given in the data sheet into Equation 2 gives the following results:

$T_{\text{trip(u)}} = 150 + 19.6 \degree C$

$T_{\text{trip(l)}} = 150 - 16.4 \degree C$

In practice, the results are much better than that shown.
Figure 4 shows T_{trip} as a function of V_F for where a number of devices have been measured across the temperature range, and the actual T_{trip} value has been determined for each using a reference voltage of 465.5 mV.

The box in Figure 4 defines the theoretical limits of T_{trip}. The data clearly lies within ±10 °C of the target temperature.

2.2 Improving accuracy

The accuracy of the device can be vastly improved if its V_F is measured at room temperature. Using this value, $V_{F(ref)}$ can be reset to eliminate the error in V_F. This situation is shown in Figure 5.
In this case there is still an error associated with S_F shown by the variation in gradient. As before, the upper values of S_F are taken from the maximum values given in the data sheet shown in Table 1.

The total error at T_{trip} is now given by Equation 3:

$$d(\Delta T) = -\Delta V_F \frac{dS_F}{(S_F)^2} + \frac{1}{S_F} d(\Delta V_F)$$

Equation 3

where ΔV_F is the voltage drop required to trip at 150 °C from 25 °C, and dS_F is the variation in S_F given in the data sheet (1.68 − 1.54 = 0.14). By adjusting $V_{F(\text{ref})}$, the term on the right-hand side of Equation 3 becomes zero. Substituting the remaining values gives the following results:

$T_{\text{trip}} = 150 \pm 11^\circ C$

Again, in practice, the results are better than this.

Figure 6 shows the effect when an estimate of T_{trip} is made for the same device using a corrected $V_{F(\text{ref})}$.
As in Figure 4, the outer box defines the theoretical limit which now gives the following results: \(T_{\text{trip}} = 150 \pm 11^\circ C \)

The measured values now lie within \(\pm 5^\circ C \) of the target. It is clear that significant improvements in accuracy are possible by measuring the value of \(V_F \) at room temperature.

A further theoretical improvement can be made because a relationship exists between \(S_F \) and \(V_F \) measured at 25 \(^\circ C\). The accuracy will be increased if \(V_F \) (at 25 \(^\circ C\)) is measured, and \(S_F \) is calculated using the expression given in Equation 4.

Using the graph, if \(V_F \) (at 25 \(^\circ C\)) is measured, the value of \(S_F \) will lie in the range given in Equation 4:

\[
S_F(\text{calc}) = \left[\frac{-0.0041 \times V_F(25^\circ C) + 4.2387}{0.099}\right] \pm 0.099
\]

(4)

The error in \(S_F \) of 0.099 represents 5 standard deviations from the mean. If we again assume that \(T_{\text{trip}} \) is set to 150 \(^\circ C\), the accuracy now becomes: \(T_{\text{trip}} = 150 \pm 8^\circ C \).

The greatest accuracy can be achieved if both \(V_F \) and \(S_F \) are measured for every device. In this case, \(V_F \) (at 25 \(^\circ C\)) and \(V_F \) (at 150 \(^\circ C\)) are measured, and \(S_F \) is calculated and stored using Equation 5.

\[
S_F = \frac{V_F(25) - V_F(150)}{150 - 25}
\]

(5)

Again, \(V_F(\text{ref}) \) must be redefined as in Equation 3. In this way, \(T_{\text{trip}} \) will be limited only by the accuracy of the voltmeter used, and an accuracy of \(\pm 1^\circ C \) can be readily achieved. This could be integrated into the module build to provide excellent temperature control in your system.
3. Summary

There are four methods of using the temperature sensing diode with increasing theoretical accuracy for each subsequent method. The two simplest methods have been measured and compared with theory. A summary of all the results is given in Table 2.

Table 2. Summary of results

<table>
<thead>
<tr>
<th>Accuracy method</th>
<th>Result</th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F not measured</td>
<td>$T_{trip} = 150\pm 19 , ^\circ \text{C}$</td>
<td>$T_{trip} = 150\pm 10 , ^\circ \text{C}$</td>
<td></td>
</tr>
<tr>
<td>V_F measured (at 25 °C) and use $S_F = 1.40 - 1.68$</td>
<td>$T_{trip} = 150\pm 11 , ^\circ \text{C}$</td>
<td>$T_{trip} = 150\pm 5 , ^\circ \text{C}$</td>
<td></td>
</tr>
<tr>
<td>V_F measured (at 25 °C) and calculate S_F</td>
<td>$T_{trip} = 150\pm 8 , ^\circ \text{C}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure V_F and S_F</td>
<td>$T_{trip} = 150\pm 1 , ^\circ \text{C}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Legal information

4.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

4.2 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

4.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.
5. Tables

Table 1. Temperature sense diode characteristics for BUK9107-40ATC 5

Table 2. Summary of results 9

6. Figures

Fig 1. Typical temperature sensing circuit 3
Fig 2. Temperature sense diode forward voltage as a function of temperature 4
Fig 3. Variation of T_{trip} with changes in V_F and S_F 5
Fig 4. T_{trip} as a function of V_F without error correction ... 6
Fig 5. T_{trip} error decreases when the value of V_F at room temperature is known 7
Fig 6. T_{trip} as a function of V_F with $V_F^{(ref)}$ corrected 8

7. Contents

1 Introduction .. 3
2 Example of a temperature sensing device application 3
 2.1 Theoretical estimation of temperature sensor accuracy 4
 2.2 Improving accuracy .. 6
3 Summary .. 9
4 Legal information ... 10
 4.1 Definitions .. 10
 4.2 Disclaimers .. 10
 4.3 Trademarks .. 10
5 Tables .. 11
6 Figures .. 11
7 Contents .. 11