

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

BUK761R8-30C

N-channel TrenchMOS standard level FET

Rev. 02 — 20 August 2007

Product data sheet

1. Product profile

1.1 General description

N-channel enhancement mode power Field-Effect Transistor (FET) in a plastic package, using NXP Ultra High-Performance (UHP) automotive TrenchMOS technology.

1.2 Features

- 175 °C rated
- Standard level compatible
- Q101 compliant
- TrenchMOS technology

1.3 Applications

- 12 V loads
- General purpose power switching
- Automotive systems
- Motors, lamps and solenoids

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I_D	drain current	V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u> and <u>4</u>	[1][2]	-	-	100	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see Figure 2		-	-	333	W
Static ch	aracteristics						
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I_D = 25 A; T_j = 25 °C; see <u>Figure 12</u> and <u>13</u>		-	1.5	1.8	mΩ
Avalanci	ne ruggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} I_D &= 100 \text{ A; } V_{sup} \leq 30 \text{ V;} \\ R_{GS} &= 50 \Omega; V_{GS} = 10 \text{ V;} \\ T_{j(init)} &= 25 ^{\circ}\text{C} \end{split}$		-	-	1.7	J

^[1] Refer to document 9397 750 12572 for further information.

^[2] Continuous current is limited by package.

2. Pinning information

Table 2. Pinning

Pin	Symbol	Description	Simplified outline	Graphic Symbol
1	G	gate	mb	D
2	D	drain		
3	S	source		$_{G}$ $(\Box \overline{A})$
mb	D	mounting base; connected to drain	 2 1 3 SOT404 (D2PAK)	mbb076 S

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
BUK761R8-30C	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	ı	Min	Max	Unit
V_{DS}	drain-source voltage		-	-	30	V
V_{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$	-	-	30	V
V_{GS}	gate-source voltage		-	-20	20	V
I _D	drain current	T_{mb} = 100 °C; V_{GS} = 10 V; see <u>Figure 1</u> and <u>4</u>	[1][2]	-	100	Α
		T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> and <u>4</u>	[1][2]	-	100	Α
		T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> and <u>4</u>	[1][3]	-	312	Α
I _{DM}	peak drain current	T_{mb} = 25 °C; $t_p \le 10 \mu s$; pulsed; see Figure 4	-	-	1249	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	333	W
T _{stg}	storage temperature		-	-55	175	°C
Tj	junction temperature		-	-55	175	°C
Avalanc	he ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} I_D &= 100 \text{ A; } V_{sup} \leq 30 \text{ V; } R_{GS} = 50 \Omega; \\ V_{GS} &= 10 \text{ V; } T_{j(init)} = 25 ^{\circ}\text{C} \end{split}$	-	-	1.7	J
E _{DS(AL)R}	repetitive drain-source avalanche energy	see <u>Figure 3</u>	[4][5] [6][7]	-	-	J
Source-	drain diode					
Is	source current	T _{mb} = 25 °C	[1][3]	-	312	Α
		T _{mb} = 25 °C	[1][2]	-	100	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s; \ pulsed; \ T_{mb} = 25 \ ^{\circ}C$	-	-	1249	Α
BUK761R8-30C_	_2				© NXP B.V. 200	7. All rights reserved

- [1] Refer to document 9397 750 12572 for further information.
- [2] Continuous current is limited by package.
- [3] Current is limited by chip power dissipation rating.
- [4] Maximum value not quoted. Repetitive rating defined in avalanche rating figure.
- [5] Single-pulse avalanche rating limited by maximum junction temperature of 175 °C.
- [6] Repetitive avalanche rating limited by an average junction temperature of 170 °C.
- [7] Refer to application note AN10273 for further information.

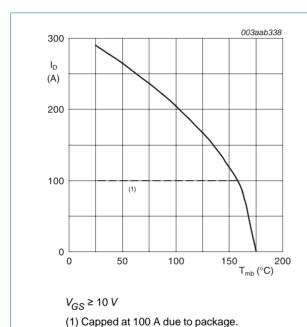


Fig 1. Continuous drain current as a function of mounting base temperature

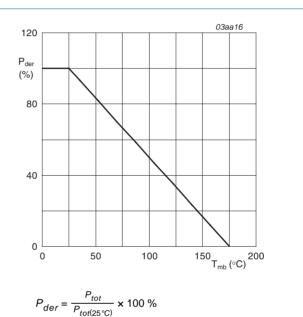
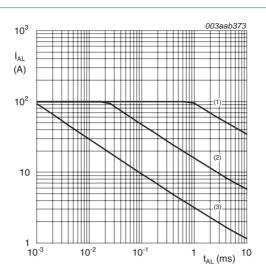
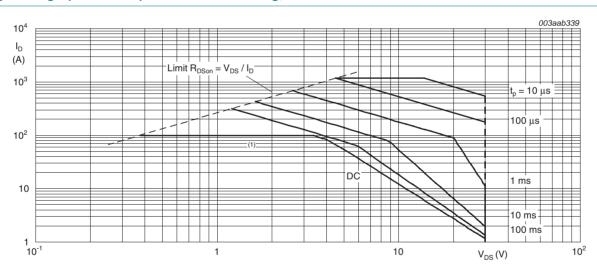




Fig 2. Normalized total power dissipation as a function of mounting base temperature

- (1) Single-pulse; $T_{mb} = 25$ °C.
- (2) Single-pulse; $T_{mh} = 150 \, ^{\circ}\text{C}$.
- (3) Repetitive.

Fig 3. Single-pulse and repetitive avalanche rating; avalanche current as a function of avalanche time

 T_{mb} = 25 °C; I_{DM} is single pulse

(1) Capped at 100 A due to package.

Fig 4. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	mounted on printed circuit board; minimum footprint	-	50	-	K/W
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 5	-	-	0.45	K/W

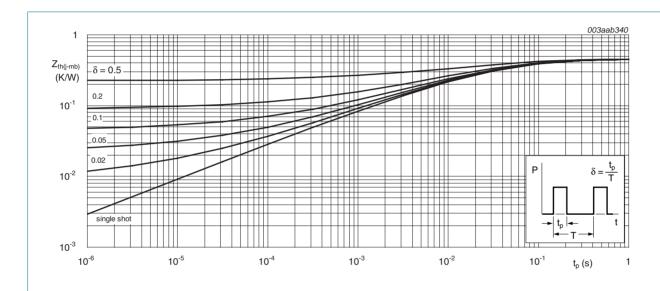


Fig 5. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static char	racteristics					
$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = 250 \mu A; V_{GS} = 0 V;$ $T_j = 25 °C$	30	-	-	V
		$I_D = 250 \mu A; V_{GS} = 0 V;$ $T_j = -55 ^{\circ}C$	27	-	-	V
V_{GSth}	gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = -55$ °C; see <u>Figure 10</u>	-	-	4.4	V
·		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = 175 °C; see <u>Figure 11</u> and <u>10</u>	1	-	-	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = 25 °C; see <u>Figure 11</u> and <u>10</u>	2	3	4	V

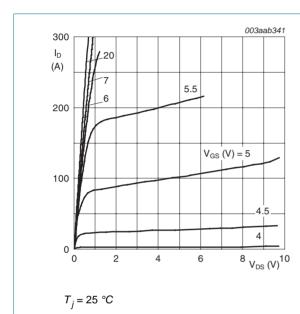
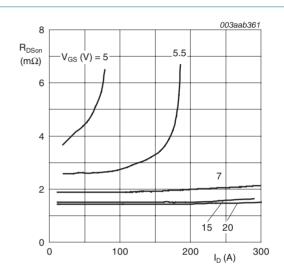
6 of 15

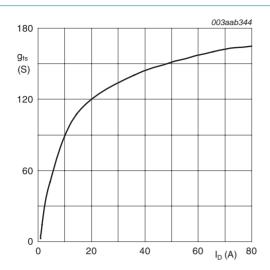
Table 6. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{DSS}	drain leakage current	V_{DS} = 30 V; V_{GS} = 0 V; T_{j} = 25 $^{\circ}C$	-	0.02	1	μΑ
		$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V};$ $T_j = 175 ^{\circ}\text{C}$	-	-	500	μΑ
I_{GSS}	gate leakage current	V_{DS} = 0 V; V_{GS} = 20 V; T_j = 25 °C	-	2	100	nA
		$V_{DS} = 0 \text{ V}; V_{GS} = -20 \text{ V};$ $T_j = 25 ^{\circ}\text{C}$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I_D = 25 A; T_j = 175 °C; see <u>Figure 12</u> and <u>13</u>	-	-	3.4	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C};$ see Figure 12 and 13	-	1.5	1.8	mΩ
Source-dr	ain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see <u>Figure 16</u>	-	0.85	1.2	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s};$ $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}$	-	73	-	ns
Q_r	recovered charge	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s};$ $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}$	-	48	-	nC
Dynamic o	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 24 \text{ V};$ $V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure } 14}{\text{ Figure } 14}$	-	150	-	nC
Q_{GS}	gate-source charge	$I_D = 25 \text{ A}; V_{DS} = 24 \text{ V};$ $V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure } 14}{\text{ Figure } 14}$	-	36	-	nC
Q_{GD}	gate-drain charge	$I_D = 25 \text{ A}; V_{DS} = 24 \text{ V};$ $V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure } 14}{\text{ Figure } 14}$	-	52	-	nC
$V_{GS(pl)}$	gate-source plateau voltage	$I_D = 25 \text{ A}; V_{DS} = 24 \text{ V};$ see <u>Figure 14</u>	-	5	-	V
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V};$ $f = 1 \text{ MHz}; T_j = 25 ^{\circ}\text{C};$ $see \underline{Figure 15}$	-	7762	10349	pF
C _{oss}	output capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V};$ $f = 1 \text{ MHz}; T_j = 25 ^{\circ}\text{C};$ see Figure 15	-	1807	2168	pF
C _{rss}	reverse transfer capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V};$ $f = 1 \text{ MHz}; T_j = 25 ^{\circ}\text{C};$ $see \frac{\text{Figure 15}}{}$	-	996	1365	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 25 \text{ V}; R_L = 1.2 \Omega;$ $V_{GS} = 10 \text{ V}; R_{G(ext)} = 10 \Omega$	-	52	-	ns
t _r	rise time	V_{DS} = 25 V; R_L = 1.2 Ω ; V_{GS} = 10 V; $R_{G(ext)}$ = 10 Ω	-	110	-	ns
$t_{d(off)}$	turn-off delay time	V_{DS} = 25 V; R_L = 1.2 Ω ; V_{GS} = 10 V; $R_{G(ext)}$ = 10 Ω	-	186	-	ns

Table 6. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _f	fall time	V_{DS} = 25 V; R_L = 1.2 Ω ; V_{GS} = 10 V; $R_{G(ext)}$ = 10 Ω	-	134	-	ns
L _D	internal drain inductance	from upper edge of drain mounting base to center of die	-	2.5	-	nΗ
L _S	internal source inductance	from source lead to source bonding pad	-	7.5	-	nH


Fig 6. Output characteristics: drain current as a function of drain-source voltage; typical values

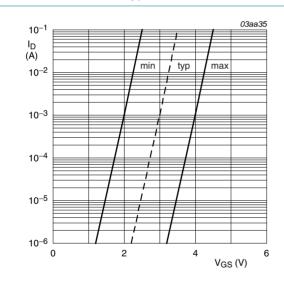
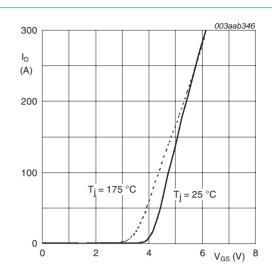
 $T_i = 25 \, {}^{\circ}\text{C}$

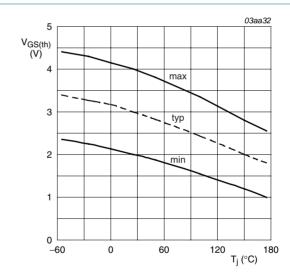
Fig 7. Drain-source on-state resistance as a function of drain current; typical values

7 of 15

 $T_i = 25 \text{ °C}; V_{DS} = 25 \text{ V}$

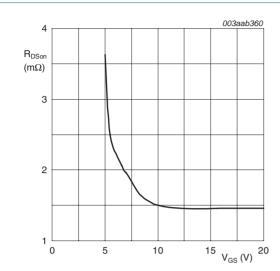
Fig 8. Forward transconductance as a function of drain current; typical values

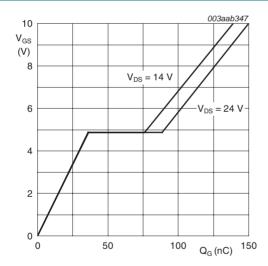

Fig 10. Sub-threshold drain current as a function of gate-source voltage

 $T_i = 25 \, ^{\circ}C; V_{DS} = V_{GS}$

$$V_{DS} = 25 V$$


Fig 9. Transfer characteristics: drain current as a function of gate-source voltage; typical values

 $I_D = 1 mA; V_{DS} = V_{GS}$


Fig 11. Gate-source threshold voltage as a function of junction temperature

8 of 15

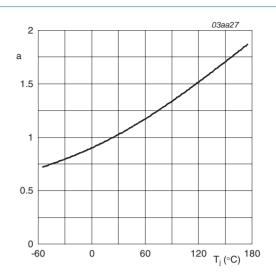

$$T_j = 25 \text{ °C}; I_D = 25 \text{ A}$$

Fig 12. Drain-source on-state resistance as a function of gate-source voltage; typical values

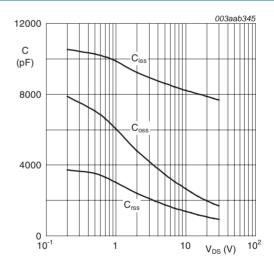

 $T_i = 25 \text{ °C}; I_D = 25 \text{ A}$

Fig 14. Gate-source voltage as a function of gate charge; typical values

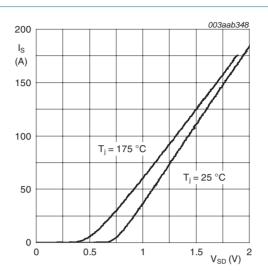
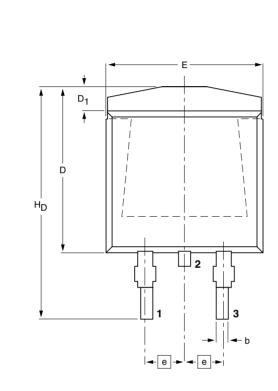
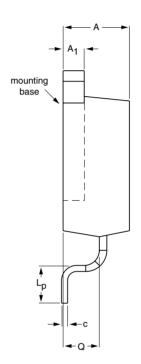

$$a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$

Fig 13. Normalized drain-source on-state resistance factor as a function of junction temperature

 $V_{GS} = 0 V$; f = 1 MHz

Fig 15. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

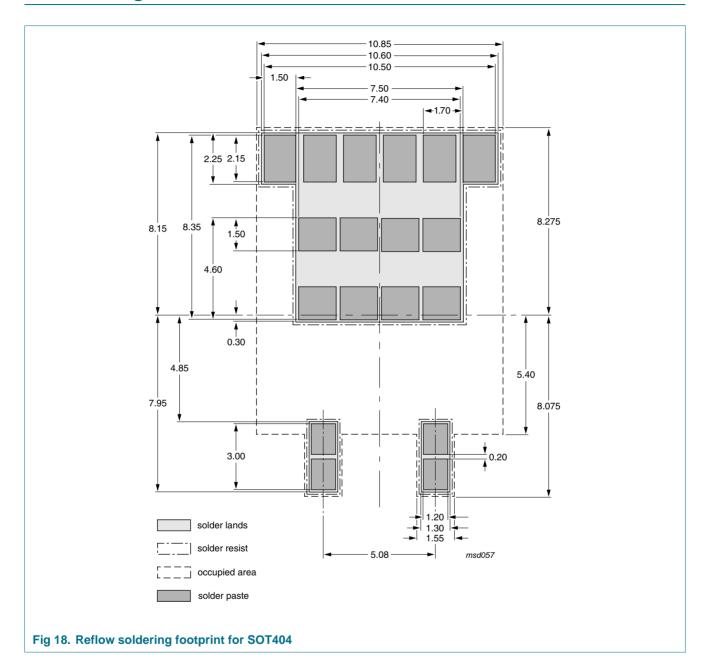

 $V_{GS} = 0 V$


Fig 16. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values

7. Package outline

Plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)

SOT404


DIMENSIONS (mm are the original dimensions)

UNIT	A	A ₁	b	С	D max.	D ₁	E	e	L _p	НД	Q
mm	4.50 4.10	1.40 1.27	0.85 0.60	0.64 0.46	11	1.60 1.20	10.30 9.70	2.54	2.90 2.10	15.80 14.80	2.60 2.20

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT404					-05-02-11 06-03-16

Fig 17. Package outline SOT404 (D2PAK)

8. Soldering

BUK761R8-30C

N-channel TrenchMOS standard level FET

9. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK761R8-30C_2	20070820	Product data sheet	-	BUK761R8-30C_1
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 			
	 Legal texts 	have been adapted to the	new company name whe	ere appropriate.
BUK761R8-30C_1	20060725	Product data sheet	-	-

10. Legal information

10.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to

result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

11. Contact information


For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

12. Contents

1	Product profile
1.1	General description 1
1.2	Features
1.3	Applications
1.4	Quick reference data 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values
5	Thermal characteristics 5
6	Characteristics 5
7	Package outline
8	Soldering
9	Revision history
10	Legal information 14
10.1	Data sheet status
10.2	Definitions
10.3	Disclaimers
10.4	Trademarks
11	Contact information 14
12	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

founded by